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ABSTRACT
In this paper, we developed a new continuous K-step Adams-Type KEYWORDS
second-derivative block hybrid methods, using the approach of K-step Adams-Type; second-derivative
collocation of the differential system and interpolation of the Taylors block hybrid methods; collocation;
series approximate solution at some selected points to get a interpolation; and stiff and highly stiff
continuous linear multistep method, which was evaluated at two off- equations; non-interpolated
grid points to generate the continuous hybrid linear multistep
methods which were evaluated at non-interpolated step points to give CORRESPONDING AUTHOR
CBM'’s. The K-step methods were augmented by introducing two off- Donald, J. Z.

step points to circumvent the Dahlquist zero barrier and upgrade the
order of consistency of the methods. Hence, the basic properties of the
methods were investigated and found to be consistent, zero-stable,
and convergent. The new methods were tested on stiff and highly stiff
equations, the results were found to compete favorably with the
existing methods in terms of accuracy and error bound.

(1) INTRODUCTION
Consider the first order initial value problem of the form

y'=f(xy) y(%)= Y, xelab] (1)

The solution is in the range @ < X < b, where a and b are finite and we assumed that f satisfies Lipschitz condition,

which guarantees the existence and uniqueness of solution of the problem (1). The discrete solution of (1), by linear
multistep methods has being studied by many Authors like Lambert [24,25] and for the continuous solution of (1) see
Jackson [23], Lie and Norsett [26] and Onumanyi et al [27,28,29]. One important advantage of the continuous Imm over
the discrete approach is the ability to provide discrete scheme for simultaneous integration. These discrete schemes
can as well be reformulated as general linear method (GLM) Butcher [12,13,14].

Many researchers have worked on the development of continuous linear multistep method in finding solution to (1).
These scholars proposed methods with different basis functions among them are [1,2,3, 4, 5,6,7,8,9,11,19,20,21], to
mention few, these block methods are self-starting and can directly be applied to stiff problem. In this paper, we present
the k-step Adams-type second-derivative Block method with multiple off-step points. The derived schemes will be
applied in a block form.
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(2) A GENERAL APPROACH TO THE DERIVTION OF THE METHODS
We define the k-step continuous hybrid formula to be of the form

s—1
y(X): Zaj (X)yn+j + Zhnﬂj (X)fmj’ n= 01 k’2k"--1 J (2)
1 j=1

Where t and S denote the number of interpolation and collocation points respectively and hn the variable step-size

which is valid in the k-step X, < X < X, . Note that;

ZC ¢, (x ZC #, (x 3)

r=t+l

ZC ¢, (x ZC ¢, (x (4)

r=t+l

The Polynomial ¢1, ¢2 yeoos ¢p is given basisand P =1+ S—1 is the degree of the polynomial interpolation Y and the

collocation point Ci ,1=12,...,Sand Cij are element of an inverse matrix C, for the initial value problems given in

the form (1). The formulas in equations (2), (3) and (4) are obtained from the multistep collocation following Onumanyi
et al [27] which was a generalization of Lie et al [26]. The expansion of

y(X) ~ Y(X) = (X)+ ayp, (X)’ a ;¢ (X)’ e ap¢p (X), Xn <X = Xipk (5)

Starting with (5) and imposing the following conditions

{a1¢1(xj)+---+ap¢p(x,-)=y,.,j:l,...,t}
1...,s

. (6)
al¢’(xj )+---+ap¢;(xj): fi,i=
Putting (6) in matrix form we have
CA=1 (7)
Where | is the identity matrix of appropriate dimension
B 2 t t+m-1 ]
1 X, X, X, Xy
2 3 t+m-1
1 Xn+l Xn+l o Xn+l e Xn+l
2 t t+m-1
Xovtar Koot Xnprer " X
0 1 2%, -t . (t+m-1)x"?2
A= : : : 0 . 1 . ( ) (8)
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and

Cl,l C1,2
C2 1 C2,2
C. Cu
Ct+l,l Ct+1,2
C=|. .
Ct+s,1 Ct+s,2
Ct+s,2 Ct+s,3
_Ct+s,2 Ct+s,3

Cl,t Cl,t+l

CZ,t CZ,t+l

(:tl (:I1+l

Ct+l,t Ct+1,t+1 e
Ct+5,t Ct+s,t+1
Ct+s,t+m Ct+s,t+2 ot
Ct+s,t+m C

t+s,t+2 e

O

1t+s

@)

2,t+s

O

t,t+s

t+1t+s

' Ct+s,t+s

C

t+s,t+s

C

t+s,t+s |
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(9)

We call A the multi-step collocation and interpolation matrix which has a very simple structure and of dimension

(t + m)x(t + m). As can be seen the entries of C are the constants coefficients of the polynomial given in (2) which are

to be determined.

(3) SPECIFICATION OF THE METHODS

Two-step method with two-off step points

1 X Xow Xpw  Xow " Xow
01 2x, 3x2 4x} --NxM*!
0 1 2x.,, 3x%, 4x3, --Nx\'*
0 1 2x. 3x%, 4x3. ---Nx)
A=10 1 2% 3Xr?+l 4X:+1 "erz\ij
1 2Xppx 3X§+k Xark
2 6Xpyq N(N _1)er]\|+—|(2_1
0 2 6x,, - N(N-1)x"2

The parameters required for equation (10) are k=2 with two-off-grid points

yn+u

n+r

—h

n+s

n+l

f

n+k

g n+k-1

_gn+k

(10)

12
Case I: k=2, with {é , 5} . Using (10) interpolating and collocating lead to the system of equations writhen in form

CA = |.yields equation (11).
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2 3 4 5 6 7 ]
n+1 Xn+1 Xn+1 Xn+l Xn+l Xn+l Xn+1
2 3 4 5 6
01 2x, 3X; 4x; S5x,  6Xx; X,
2 3 4 5 6
01 2x, 3, 4x°, 5x*", 6Xx°;, 7IX°,
n+= n+= n+= n+= n+= n+=
3 3 3 3 3 3
01 2x, 3x*, 4x*, bBx*, 6x°, 7x°,
A= s s s s n3 n3 (11)
2 3 4 5 6
O 1 2Xn+1 3Xn+l 4Xn+1 5Xn+1 6Xn+1 7Xn+1
2 3 4 5 6
O 1 2Xn+2 3Xn+2 4Xn+2 5Xn+2 6Xn-¢-2 7Xn+2
0 0 2 6x.,,  12x2, 20x>, 30x', 42x>,
0 0 2 6x.., 12x2, 20x%, 30x’, 42x°,

Similarly, we invert the matrix A in equation (1) above, which leads to the following continuous scheme

y(X):alym—l +h ﬂo(x)fn +ﬂ1(X)fn 1 +ﬁ2(X)f 2 +ﬁn+l(x)fn+1 +ﬂ2(x)fn+2

3 3 "3 (12)
+ hZ[QZ(X)fmZ]
where
o, =1
~3483, 243(—x, +x)* 729 (=x, +x)’ 7533 (=x, +x)* (=x, +x)
P = h+ B 2 + 3 N 4
5 7000 25 h 25 h 200 h h
+8_1(—xn +x)° 729 (=%, +X)’
10  h° 700  h°
81, 243(-x, +x)° 243(-x,+x)’ 11907 (-x, +x)* 2187 (- x, +x)°
By == h- + 2 - 3 + 4
2 8% 16 h 4 h 128 h 32 h

1539 (= x, +x)° L 129 (= x, +x)
64 h® 224 h®
37 . 9(-x, +x)° 113(-x, +x)’ 487 (-x, +x)* 923 (-x, +x)°
pr=—ooh+ = -

+
120 h 3 h? 8 h® 20 h*
B xtx) 9 )
2 h® 4 h®
163 87 (—x, +x)° 151(-x, +x)° 6047 (—x, +x)* 6931 (-x, +x)°
B, =— h+ - + -
48000 400 h 150 h? 3200 h? 4000 h*
L 243 (=%, +%)° 99 (=%, +x)’
320 h® 800 h®
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3 4 5
ylzihz—z(—xn+x)z+§(_xn+x) 59 (=%, +X%) +119(—xn+x)

420 3 h 4 h? 10 h?
9(=x, +x)° 9 (=x, +x)
—_— J’__
2 h* 14 h®
3 4 5
, = 13 hz—i(—xn+x)2+l(_xn+x) n (—xn2+x) , 83 (=% +x)
16800 20 30 h 160 h 200 h?
3(=x,+x° 9 (=x, +x)
-= +
16 h* 280 h®

X = X,,, - We obtain respectively the Adams-

Evaluating the continuous scheme (12)atX =X |, X=X ,,X=X,,,
n+=

n+=
3 3

Type-Block Hybrid Method which is zero-stable and A(a)— stable by the analysis in the section below. Therefore,
the discrete hybrid block method (13).

2

h h
= -———133700f -167184f , —30375f , —103600f , —1141f +——(680 +13
yn yn+1 336000 [ n n+1 n+g n+1 n+ZJ 16800 ( gn+1 gn+2)

3 3

2
Y o =Y.t [5700 f —210816f , —725625f , —204400f , +1141fn+2]+8h(209n+1 -13g,,,)
n+5

1701000

n+15 n+§ 5050
n (209001, +233712f , —3702375f , he
Y 2= Yoa T 5557 AA00 BE e + —(21160g n+l +14lg n+2)
3 27216000 _5569200fn+1 _13237fn+2 1360800
12700f —104976f , +455625f )
yn+2 = yn+l + n+§ n+§ + (7720g n+l 6439 n+2)

336000 _148400f,,, +121051f, , 16800

n+l

(13)
12 . : : . . L
Case II: k=3 with § , E . Using (10) interpolating and collocating leads to the system of equation written in the

form of (7), yield (14).

2 3 4 5 6 7 8 7
1 Xn+1 Xn+l Xn+l Xn+l Xn+1 Xn+1 Xn+l Xn+l
2 3 4 5 6 7
1 2x, 3X, 4x: S5X,  6x, X, 8X,
12X 3x° 4x®,  5x*, 6x°, 7x° 8x’
n+= n+= n+= n+= n+= n+= n+=
3 3 3 3 3 3 3

e el el TE T v el
A=10 1 2Xp.1 3X§+1 4Xr§+l 5X:+1 6X2+1 7Xg+1 8XZ+1 (14)
01 2% i Ap;  SXno BXe,  TXa,  8Xp,
01 2Xp.3 3X§+3 4X§+3 5X:+3 6X:+3 7Xr?+3 8XZ+3
0 0 2 6x..,  12x2, 20x>, 30x:, 42x’, 56x°,
00 2 6X,.,  12x2, 20x3, 30x., 42x>, 56x°,

VOLUME 2 ISSUE 1



International Research Publications Engineering & Computer Sciences

Inverting the matrix, A in equation (14) above, which leads to the following continuous schemes;

y(x): alyn+1 + h ﬁo(x)fn +ﬂ1(X)fn 1 +IBZ (X)f 2 +ﬂn+l(x)fn+l +ﬂ2 (X)fn+2 +ﬂ3(x)fn+3

+§ 3 n+3 (15)
+ hz[QZ(X)fmZ + g3(X)fn+3]

where
a, =1
2 3 4 5
= 6289 hox. +X_4_3(—xn +X) +691(—xn 2+><) 1831 (-x, 3+x) , 659 (= x, jx)
60480 12 h 108 h 288 h 180 h
131 (=x, +x)° +i(—xn +x) 1 (=% +x)
108  h° 14 h° 64 h’
5 - 11907 6561 (=%, +%)° 729 (=%, +x)’ , 175689 (=%, +x)* 56133 (=X, +X)°
5 25600 800 h 32  h? 6400 h® 3200 h*
, 39609 (=%, +%)° 729 (=X, +x)’ , 2187 (= x, +x)°
6400  h° 640  h® 25600  h’
5o 101817 6561 (= x, +x)’ , 12393 (=%, +x)° 40095 (=X, +x)° , 123201 (= x, +x)°
2 439040 784 h 392 h? 896 h? 3920  h?

3
4617 (- %, +X)° , 12393 (=x, +x)
392 h° 5488  h°
1441 (=x, +x) 39(=x,+x)° 469 (-x,+x)" 893(—x, +x)° 425(-=x, +x)°
Fi="6720 h 2 h2 16 h° 40 h 48 K
x| 9 (xy+x)
56  h° 64 h’
1723 243(=x, +x)°  21(=x, +x)° 14307 (-x, +x)' 1471 (=X, +x)’

h+2
2

= h +— — +
Pe=134400" 200 8 h? 3200 h? 400  h
911 (= x, +x)° L1 (=%, +%)" 153 (=x, +x)

600  h° 560  h° 6400 h’

124459 =~ 667 (-x, +x)* 27235(-x, +x)° 19135 (-x, +x)* 310217 (- x, +x)°

Pe= fzat6320" 4708 h 42336 h? 16128 h° 282240 b
180763 (X, +X)° , 5667 (=%, +x)" 611 (=, +x)

338688  h° 43804  h° 50176  h’

3 4 5 6
yz=_£h2+g(_xn+x)z_2(—xn+x) +571(—xn2+x) _@(—xn:x) +@(—xnjx)
6720 20 160 h 20 30 h

9 (=x,+X) L9 (= x, +x)°

28 h° 320 h°
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3 4 5
37 h2+i(—xn+x)2— 41 (—x, +X) +§(—anx) 9% (—XH:X)
56448 28 252 h 96 h 336 h (16)
281 (=x,+x) 27 (=x,+x) L3 (=%, +x)
2016 h* 784 h® 896 h®

V3=

Evaluating the continuous scheme (16)at X=X ,,X=X ,,X=X.,;,X = X,,,,X = X3, We obtain respectively
n+= n+—
3 3
the Adam’s-Type Block Hybrid Method which is zero-stable and A(Oc)— stable by the analysis in method (13).
Therefore, the discrete hybrid block method (17).

24652880f —110270727f |, —54981180f , h2

h n+> n+=
Yo =Y T moonar Ans 8 8 |- (24789 n+2 _185g n+3)
237081600 _5083480f, , +3039372f, , +622295f, , 282240
" 3432352f —132774957f | —463521528f e
Y..1 = You * 105020304 "3 REREG 1285956(84gn+2 +379,.5)
3 ~127734768f | +575064f,,, —111523f
h 419506640f +386877137fn+£ —33375413340 fn+3 h?

y 2 = yn+1 T o AmOAMACA A 3 3 - (6439029 n+2 _4110% n+3)
3 172832486400 _ »g75436420f _ +928405548f  +141572735f 205752960

n+l n+2 n+3

L [941584f, +67512697 , —20234124f e
Yoo = Yo T 5 anan BE "3 - (6678gn+2 - 229gn+3)
47416320 , 36345456f_ | + 24666012f, +829201f, , | °6448
L (3371201, +2250423f | —6036120f |, e
Yois = Y01 TS noonn e e + (10929 n+2 4159 n+3)
7408800 , g502480f, | + 7475832f  _, +2962105f , ) 8820

(17)
(4) ANALYSIS OF THE NEW METHOS

(4.1) In this section, we determine the convergence, construct the regions of absolute stability and obtain the orders
and error constants of the new K-step Adams Type Second-derivative block hybrid methods.

Case I: Two step with 2 off- step points.

(4.1.1) Order and Error Constant of the Method (11). Using the method in Chollom, et al [15,16]and Fatunla et al
[19,20], the new K-step Adams Type Second-derivative block hybrid methods has order and error constants as shown
below; Let (11) be express in the form

Kk ) Kk .
AO ym+1 = Z AI ym+1 + hz BI fm—l (183)
i=1 j=0

Where h being a fixed mesh size within a block
A',B',i =0k are rxr identitymatrixwhileY, ,Y, , and F_ , are vectors of numerical estimates.
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[ —337h | [—3483h —-81h -37h —-63h
Ty, ] 3360 7000 896 120 48000 [ f ]
L ooops 1! 19h -976h -215h -14h 1630 | "5
010 0 w5l 11y 1,]5670 |rgq,| 7875 504 1215 243000 f o
0 010y ,| [1/7" |-209n " 541h —-109h -221h —1891h 3
000 1] 2| |1 272160 63000 8064 1080 3888000 | "
Vo | —127h ~2187h 1215h -53h 17293h | fn2 |
| 3360 | | 7000 896 120 48000 |
[17h?  13h?
420 16800
2h?  —13h?
.| 8505 85050 {gm}
529h?  47h? || Q...
34020 453600
193h* —643h*
| 420 16800
(18b)
Expanding (18) in Taylor series about X, and comparing the coefficient of h, gives
C,=C,=C,=C,=C,=---=C, =0 hasorder C =08in which its orderis p =[7,7,7,71".
Therefore, the method (11) is of order seven (07) with error constant
[ -1 29 431 19 7
8 {777600 '124002900 ' 3968092800 ’1814400}

(4.1.2) Consistency: According to (Lambert, 1991)
The block method (11) is consistent since it has order p=82>1.

(4.1.3) Zero Stability
Definition 4.1: (Lamberts,1991)

A block method is said to be zero-stable if as h — 0, the root Z, = l(l)k of the first characteristic polynomial

p(Z) =0 thatis p(Z) = det{z Az (k_i)} = 0 satisfies |Zi| <1land for those roots with |Zi| =1, the multiplicity

must not exceed two. Thus, (11) is expressed in the form

0

o+ O O
_ O O O
|
o O O o
o O O o

0 1
1 0 1 ) ,

=z2°(z-1 19
0 0 1 (z-1) (19)
0 01

p(z)=2*(z-1 =0, z=0,0,1,1

Hence by definition (4.1), our new method (11) is zero-stable.
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(4.1.4) Convergence: The block method (11) is convergent by consistence of Dahlquist theorem below.
Theorem 4.1 (Dahlquist, (1963)

The necessary and sufficient conditions that a continuous linear multistep method be convergent are that it be
consistent and zero-stable. Hence our new method (11) is convergent.

(4.1.5) Region of Absolute Stability of method (11)
The stability polynomial for our method (11) is given by

h(a)):— 1 a)4h6+( 18803 o'+ 1 ngh5+(_ 31861 o'+ 731341 a)3)h4
5670 7654500 2835 36741600 57408750

8069161 , 1897799 ) . ( 21743711 , 311966759 ) ,

+ e~ " |h°+ "+ o’ |h
244944000 24494400 122472000 2449440000

( 3844241 , 1901359

+ w’ +
3024000 3024000

a)“)h—a)4 + 0t

Using MATLAB software, the absolute stability region of the new method (11) is plotted and shown in figure 1.

15 fg—_\
N\

Im(z)
o

; /

Re(z)
FIGURE 1: Region of absolute Stability of Method (11).

(4.2) Order and error constant of the method (14)
(4.2.1) Order and Error Constant of the Method (14). Using the method in Chollom, et al [15], the new K-step Adams

Type Second-derivative block hybrid methods has order and error constants as shown below; Let (14) be express in the
form (18a) as shown in (20)
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[—6289h
- 60480
100 0 o] | 1 2189h
01000/ i |
8 8 t 2 8 Y,z |2 1[ym]+ 24089920 1]
0000 1) |1 —L20mh
L Jyo | 60480
=TS —43h
| 945
[-11907h -101817h —1441h 1723h  124459h -50h*  -37h°
25600 439040 6720 134400 47416320 f 6720 56448
~591h  -8831h  -18103h  163h ~111523h | e h? 37h?
480 20580 153090 306180 1080203040 | .2 | |15309 1285956 |
.| 573n ~254347h  -815033h —526307h  28314547h | °1 | 153302 —8221h? gm}
25600 1317120 4898850 97977600 3456649720 f“” 4898880 41150592 | g,.,
729h ~187353h  1717h  4661h 82929h 2 | | _53p2  229h?
5120 439040 2240 8960 47416320 Fosa 448 56448
243h —5589h 241h 2119h 59242h 13h? _83n?
| 800 6860 210 2100 1481760 105 1764
(20)
Expanding (20) in Taylor’s series about X, and comparing the coefficient of h, gives
C,=C, =C,=C,=C,=--=C;, =0 hasorder Cp = 09in which its orderis p =18, 8, 8, 8, 8]T ;

Therefore, the method (14) is of order eight (08) with error constant

[ 1 — 4103 12491 1 89 T
® | 595350 ' 3124873080 ' 31248730800 176400 ' 4762800

(4.2.2) Consistency
The hybrid block method (14) is said to be consistent, since it is of order nine (09).

(4.2.3) Zero- Stability
On the application of definition (4.1), on the method (14), we obtain

=2%(z-1)

o o+ O O
o r O O O
o O O o O
O O O O o
L i

1
0
p(z)=|20
0
0

p(z)=2°(z-1) =0,

Hence, our method (14) is zero-stable
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(4.2.4) Convergence:
On the application of theorem (4.1), it is clear that method (14) is convergent since it is consistent and zero-stable.

(4.2.5) Region of Absolute Stability:
The stability polynomial of the method (14) is given by

1 5.4 22406 3091889  5).6 ( 12813390548551 , 2366851601 ;) s
h(w)= ——a°h" + " - @’ |h° + OMES @’ |h
5040 12301875 12002256000 459356342760000 288054144000

+( 9126835206827 o+ 3315915103 a)sjh4 +(5359685255059301 ' — 46826296879 wthg,
57419542845000 72013536000 9799601978880000 11522165760000

,[ 3424693720511 , 870107482487 ), (1708595177 ., 1171946263
2304433152000 2304433152000 960180480 960180480

af’jh—a)5 +w*

Using MATLAB Software, the absolute stability1 region of the new method (14) is plotted and shown in figure 2.

15 r r :

/.

10

Im(z)
o

10 \\—/

-15 : : * : :
5 0 5 10 15 20 25

Re(z)

FIGURE 2: Region of absolute Stability of method (14)

(5) NUMERICAL EXPERIMENTS

To check the behavior of the Newly constructed k-Step Adams-Type second-derivative Block Hybrid Methods (11) and
(14) are tested on stiff differential equations, we solve well known numerical problems using a fixed step size. The test
problems are solved and results obtained are compared with the existing once in the literature to illustrate their
potentials.
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Example 1:

Consider the stiff problem y'(x) = 5y(x),

Source: Yakusak and Adeniyi (2015)

Example 2:

Consider the highly stiff problem

y' +4y=20,y(0)=-4,y(0)=2,0<x<Lh=

with the exact solution
y(x)=5-3e*

Source: Badmus, Yahaya and Subair (2014)

Example 3:

1

100

We consider the highly stiff problem of ordinary differential equation

y' = —a(y, —F(x))+F'(x). y(%,)=¥,, x<[0,0,1 h=0.01
with the exact solution

y(x) =y, +exp(-ax)-1, where & =10, F(x)=0, x, =0and y, =1

Source: Rufai M.A., Duromola, M. K., and Ganiyu, A. A. (2016).

Engineering & Computer Sciences

ﬁ, whose exact solution is y(x) = exp(5x).

TABLE 1: Comparing the absolute errors in the new methods with Yakusak and Adeniyi (2015) for Example 1

Absolute Error in

h=0.01 Exact Solution of Exact Solution of | Absolute Error in _Absolute Error Tl s B Al
X New Method (11) New Method 14) method (11) in method (14) (2015)
0.01 1.0512710963764 1.05127109637 -5.52000E-17 3.7000E-18 0.0000000000
0.02 1.1051709180756 1.10517091807 0.000000000 -8.3000E-18 0.0000000000
0.03 1.1618342427283 116183424272 -5.83600E-16 -3.6800E-17 0.0000000000
0.04 1.2214027581601 1.22140275816 -1.09880E-15 -3.4300E-17 0.0000000000
0.05 1.2840254166877 1.28402541668 -1.22260E-15 -5.0300E-17 0.0000000000
0.06 1.3498588075760 1.34985880757 -1.82150E-15 -8.5500E-17 1.000000E-10
0.07 1.4190675485932 1.41906754859 -1.98940E-15 -8.4900E-17 1.000000E-10
0.08 1.4918246976412 1.49182469764 -2.68410E-15 -1.0560E-16 1.000000E-10
0.09 1.5683121854901 1.56831218549 -2.90410E-15 -1.4890E-16 1.000000E-10
0.10 1.6487212707000 1.64872127070 -3.70790E-15 -1.5080E-16 1.000000E-10
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TABLE 2: Comparing the absolute errors in the new methods with Badmus, Yahaya and Subair (2014) for Example 2

h=0.01 Exact Solution of Exact Solution of Absolute Error | Absolute Error in ]?fjg:s;e\(]i;:;raig

X New Method (11) New Method 14) in method (11) method (14) Subair’ (2014)
0.01 2.117631682543 2.117631682543 2.35000E-17 1.20000E-18 2.00000E-14
0.02 2.230650960840 2.230650960840 2.17000E-16 3.10000E-18 3.00000E-14
0.03 2.339238689848 2.339238689848 2.30200E-16 1.23000E-17 8.00000E-14
0.04 2443568633101 2443568633101 4.00800E-16 1.07000E-17 1.20000E-12
0.05 2.543807740766 2.543807740766 4.05100E-16 1.40000E-17 1.00000E-12
0.06 2.640116416800 2.640116416800 5.55000E-16 2.18000E-17 2.69700E-11
0.07 2.732648775632 2.732648775633 5.51600E-16 2.02000E-17 5.58000E-12
0.08 2.821552888779 2.821552888779 6.83100E-16 2.27000E-17 6.21400E-10
0.09 2.906971021787 2.906971021787 6.73200E-16 2.93000E-17 2.70480E-10
0.10 2.989039861893 2.989039861893 7.88000E-16 2.73000E-17 1.45710E-08

TABLE 3: Comparing the absolute errors in the new methods with Rufai et.al. (2016) for Example 3

h=0.01 Exact Solution of Exact Solution of Absolute Error in | Absolute Error in Absﬁﬁgfelztlgl)r in
X New Method (11) New Method 14) method (11) method (14) [2016.) '
0.01 0.904837418035 0.904837418035 1.064197E-14 1.335650E-15 1.079154E-12
0.02 0.818730753078 0.818730753078 1.006416E-13 3.421540E-15 1.952918E-12
0.03 0.740818220682 0.740818220682 9.977720E-14 1.384129E-14 2.650610E-12
0.04 0.670320046035 0.670320046035 1.647967E-13 1.153464E-14 3.197828E-12
0.05 0.606530659712 0.606530659713 1.562478E-13 1.386704E-14 3.616893E-12
0.06 0.548811636093 0.548811636094 2.023862E-13 2.050776E-14 3.927240E-12
0.07 0.496585303791 0.496585303791 1.889671E-13 1.782317E-14 4.145766E-12
0.08 0.449328964117 0.449328964117 2.209331E-13 1.866815E-14 4.287136E-12
0.09 0.406569597403 0.406569597406 2.046903E-13 2.278879E-14 4.364056E-12
0.10 0.367879441171 0.367879441171 2.261059E-13 2.007710E-14 4.387513E-12
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CONCLUSION

In this paper a new class of implicit K-step Adams-Type Second-Derivative Block Hybrid Methods (SDBHAMs) is
considered for the numerical solution of stiff IVPs in ODEs. The addition of off-grid points allowed the adoption of linear
multistep procedure which helps the zero-stability barrier, upgraded the order of accuracy of the new methods and to
obtain very low error constants. The new methods where tested on some stiff and highly stiff problems, and compared
with some exiting methods cited in the literature, shows that our new methods are superior and performed better than
the methods in the literature and are well suited for the integration of stiff equations in ODEs.
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