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ABSTRACT

In this paper, we present a class of implicit Second-derivative Runge-
Kutta collocation methods designed for the numerical solution of
systems of initial value problems that are derived and studied. We also
discuss the difficulty associated with large regions of absolute stability.
In this case, one must take advantage of the second derivative terms in
the methods. We involve the introduction of collocation at the two
endpoints of the integration interval in addition to the Gaussian interior
collocation points and also the introduction of a different class of basic
second derivative methods. With these modifications, fewer function
evaluations per step are achieved. The stability and consistency
properties of the methods are investigated, with the solution curves of
the new methods. Numerical examples are given to illustrate the
accuracy and efficiency of the proposed methods.
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INTRODUCTION

In this paper, we present a new class of implicit second-derivative Runge-Kutta (SDRK) collocation methods for the
numerical solution of initial value problems for systems of ordinary differential equations (ODEs), of the form

Yy = f.(X Yis Yaueen V)
Yo = (% Y1, Voo s Vi)

Yo = (X, Vi Vaoroes Vi) )

with initial conditions

yl(XO ) - yf
Y, (Xo ) =Y,

0

yn (XO): yn

(1a)

(1b)
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On the finite interval | =[X0,XN], where y:[xo,xN]—>iRmand f Z[XO,XN]X R™ - NR™ is continuous and
differentiable. The motivation for studying the implicit second-derivative Runge-Kutta collocation methods,
particularly, the Gauss-Runge-Kutta collocation family, is that, collocation at the Gauss points leads to Runge-Kutta
methods which are symmetric and algebraically stable, Burrage and Butcher [1979].we therefore, extend the concept
adopted in Yakubu [2003, 2010, 2011, 2015, 2016] and Donald, Skwame and Dominic [2015] that the only symmetric
algebraically stable collocation methods are those based on Gauss points. The inclusion of the two endpoints of the
integration interval as collocation points in addition to the Gaussian interior collocation points make them more
advantageous, because this minimizes the number of internal function evaluations necessary to achieve a given order
of accuracy. Secondly, a substantial increase in efficiency maybe achieved by the numerical integration methods which
utilize the second-derivative terms. Thirdly, the relatively good stability properties enjoyed by these methods make
them more efficient for the numerical integration of systems having Jacobians with eigenvalues lying close to the
imaginary axis Adesanya, Fotta and Onsachi[2016] and Akinfenwa, Abdulganiy, Akinnukawe ,Okunuga and Rufai
[2017].

This paper focused on the derivation of a class of implicit second-derivative Runge-Kutta (SDRK) collocation methods
for solving systems of initial value problem of ordinary differential equations. Yakubu, Kumleng and Markus [2017],
developed second-derivative Runge-Kutta collocation methods based on Lobatto nodes for solving stiff ODEs and yields
a very good results, their work motivates us to derive a class of implicit Second-derivative Runge-Kutta collocation
methods designed for the numerical solution of systems of initial value problems.

1. A GENERAL APPROACH TO THE DERIVATION OF THE SDRK COLLOCATION METHODS

In this section, we describe the general derivation of the special class of implicit second-derivative Runge-Kutta
collocation methods for direct integration of initial value problems of the form (1). We consider the multistep
collocation approach of Onumanyi et al. [1994] and now extend to second derivative of the form,

r-1 s—1 -1
y(x) = Zaj (X)yn+j + hZﬁj (X)yl'1+j + hZZVj (X))_/,:H-
j=0 j=0 j=0 (2)

We set the sum P=I+S +1t where, I denotes the number of interpolation points used, and $>0,t>0 are
distinct collocation points. Here a; (X), ﬁj (X) and }/(X) are parameters of the methods which are to be determined.

They are assumed to be polynomials of the form

p-1 ) p-1 ) p-1 )
a;(X) :Zaj,mxl h,; (X):zhﬂj,mxl h27j (X) :Z‘,hzyj,mxI
i—0 ) i—0 ) i-0 (3)

We find it convenient to introduce the following polynomials
p-1 ) p-1 ) p-1 )
p(§):2ai§' U(f):Zﬁiéﬂ T(f):z%él
i=0 i=0 i=0

which we shall call the first, second and third characteristic polynomials respectively of (2).
Here, our aim is to utilize not only the interpolation points {Xj } but also several collocation points on the interpolation

interval of (2). This means that we employ a special type of Hermite interpolation for y(x). Substituting (3) into (2)
we have
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r-1 p-1 ) s-1 p-1 ) . 2t -1 p-1 .
_ 1 I | [v1
y(X) - j |+1X yn+j +h ﬂj,i+lx yn+j +h Zzyj,iH +X yn+j
j=0 i=0 j=0i=0 j=0i=0

p-1{r-1 s-1 t-1
N1 2 " i
ZZ{ XY +h2ﬁj,i+lyn+j +h ZVj,mymj }X
iz0 | i—0 =0

i=0 | j=0 (4)
Writing
p-1
¢i = {Zajl+lyn+j +h2ﬂj |+1yn+1 +h 27/1 |+1yn+1}
i=0
Equation (4) reduces to
p-1 )
y(x) = Z¢ixl-
=0 (5)

Here {Cnﬂ- } are collocation points distributed on the step-points array, Y, ., jis the interpolation data of y(x) onX,,
, )_/r'w- and )_/r']'Jrj are the collocation data of y'(x) and y"(x), respectively, on { nej } We setthe sum I+ S+t to be
equal to P so as to be able to determine {ai } in (2) uniquely.

To fix the parameters o ( 0L%...,p —1), we impose the following conditions:

a(xmj): yn+j ) (J :0’112!“'1r_1) (6)
ﬁ'(cmj) = yr'1+j (J =012,---s _1) (7)
7"(Coij) = Vnuj (j=012,--t-1) (8)

In fact, equations (6) to (8) can be expressed in the matrix-vector form by

Ma =y 9)

where the p —square matrix M, the p —vectorsa and y are defined as follows:

X, X2 X3 X! x® xP
3 4 5 p-1
0 Xn+1 X n+1 Xn+1 Xn+1 Xn+l Xn+l
2 3 4 5 p-1
Xn+s—1 Xn+s 1 Xn+s—1 Xn+s 1 Xn+s 1 Xn+s—1
M- |© 1 2c,  3cx? 4cx? 5exy - D'cP? (10)
2 3 4 p—2
1 2Cn+s—l 30n+s—l 4Cn+s—l 5Xn+s—l D’ Crisa
0 2 6c, 12¢2 20c® .- D"¢/?
0 0 2 6c .., 12c%_, 20cd _, --- D"xP3
n+s-1 n+s-1 n+s-1 n+s-1

tvid

a=(a0,a1,a2’~-,ap_1)T, yz(yn!"'iym—r—l’ yr:i”"ym—s—l' yn’”'fyrl‘ll+s—l)T
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where D' =(p—1)and D" =

Vandermonde matrix, M in (9) is non-singular. Consequently, equation (9) has the unique solution given by

(p _1)(p - 2) represent first and second derivatives respectively. Similar to the

a=MTy (11)

The interpolation polynomial y(X)in (5) can now be expressed explicitly as follows:

r-1 s—1 -, t-1 . T
y(X) = {Zaj,p—lymj + hZﬂj,p—lynJrj + hzzyj,p—lymj }(1’ X, XZ" o Xp 1)
=0 j=0 j=0

(12)
Recall that p+s+t , such that equation (12) becomes
r-1 s-1 & ) Y
N1 " r+s+t—:
y(X) = Zaj,r+s+t—1yn+j hZﬁj,HsH—lymj +h Zyj,wsﬂ—l yn+j (11 X, X7 X ) '
j=0 j=0 j=0 (13)

Expanding (13) fully, gives the continuous scheme;
_ _, _ . N
y(X) = (yn7' " Yoira, yr: 1 Yngsao yr':i * yr'm_l)U T (l. X, Xz,' .. X"t l) .

(:L X XZ . Xr+s+t—l)
where T denotes transpose of the matrix U in (11) and the vector R .

In the second-derivative methods, we see that, in addition to the computation of the f -values at the internal stages in
the standard Runge-Kutta methods Butcher [2014], the modified methods involve computing g-values, where g is
defined by Butcher and Hojjati [2005] as

y”(x) = g(y(x)), the component number i of g(y(x)) can be written as,

a(y)= X BV £ 49) i=12,..m
Y,
According to Chan and Tsai [2010] these methods can be practical if the costs of evaluating g are comparable to those
in evaluating f and can even be more efficient than the standard Runge-Kutta methods if the number of function
evaluations is fewer. It is convenient to rewrite the coefficients of the defining method (13) evaluated at some points in
the block matrix form as

Y =e®y, +h(A® 1 )F(Y)+h*(Ae 1, J5(v) (14)
You =¥, +hb" ® 1, F(Y)+h2[" @1, B(Y),
A= [éij ]SXS indicate the dependence of the stages on the derivatives found at the other stages and

where, A = [aij]

b=[bi]

computed at the various stages, | is the identity matrix of size equal to the differential equation system to be solved

sxs !

ol b= lbi Jsxl are vectors of quadrature weights showing how the final result depends on the derivatives

and N is the dimension of the system. Also & is the Kronecker product of two matrices and e is the sx1 vector of units.
For simplicity, we write the method in Yakubu [2017] and Yusuf [2019] as follows:

Y =y, + hAF(Y)+h2AG(Y),
You =Y, +hb"F(Y)+h?0"G(Y),

(15)
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and the block vectors in R are defined by

Yy F(Y.) g(Y1)
Y f(Y
Y: '2 F(Y): .( 2) G(Y)— g(YZ)
YS , f (YS) , g(YS) . (16)
where s denotes stage, values used in the computation of the step Y, Y,,...,Ys.
The coefficients of the Implicit Second-Derivative Runge-Kutta methods can be conveniently represented more
compactly in an extended partitioned Butcher Tableau, of the form
c| Al A
bT 6T (17)

where C = [1]SX1 is the abscissa vectors which indicates the position within the step of the stage values.
2. THE SPECIFICATION OF METHODS

2.1 Fifth Order Implicit Second-Derivative Runge-Kutta Collocation Method
For the first implicit second-derivative Runge-Kutta collocation method of order five, we define cf = (X — Xn)and
consider the zeros of Legendre polynomial of degree two in the symmetric interval [— 1, 1], which were transformed

into the standard interval [Xn y X, +1] The proposed continuous scheme in (13) can now be written as,

y(X) = Olo (X) yn + h[ﬁl(x) fn+u +132 (X) fn+v]+ hz[yl(x)gnw + 72 (X)gn+v] (18)
Where
a,(x) =1
B, (X) = h‘/;(40t J2 + 25t + 240t2 — 720t* + 640t* —192t5)
B,(x) = h‘/_( 25t + 40t +/2 — 240t? + 720t* — 640t* +192t° )

=" 2 (-5 + 24/2) (1095 —540 /2 + 6000 t —12240 h t? —2720 t?4/2 +10560 t° t
7/ - — 7

' 16320 | +960 t°+/2 —3264 t*+2400 t~/2

-_h 2(5+2+/2) (1095 t—540 t 26000 t+12240 t°-2720 t?+2-10560 t° t
V(X)) ==

’ 16320 | +960 t3/2 +3264 t°+2400 t 2

75(X) = 40(15 120 th? + 400 h?t? 48Ot3h2+192t4h2)
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and x

Legendre polynomial of degree 2) we obtain the implicit second- derivative Runge-Kutta collocation method of
uniformly order 5with only 2-stages with the following block hybrid discrete scheme:

Evaluating the continuous scheme y(X)in (18) at the points X = X (where u and v are the zeros of

n+l? n+u n+v

yn+l yn [(32+14f) fn+u +(32 14\/7) fn+v +56fn+l]+ [ (7 GI)gn+u (7+6I)gn+v]
Yo =Y.+ [(128+90f 2)f. . +(384-3142) f, . +(448-256V2 )fm] h [—(143+80x/§)gn+u +(1-1642)g,., |

Vo=V, [(384+314f 2)f

+(128-90V2) 1, + (448+ 25612) fn+1]+ [(1+16f 2)g,., + (143+80V2)g, .|

(19)

Converting the block hybrid discrete scheme to implicit second-derivative Runge-Kutta method and using (16) we write
the method as,

Yy, =Y., +h = L 7‘/_ F,+h i—ﬂ F2+h(£]F3+h2 QGl—hz QGZ (20)
10 60 10 60 5 48 48
where the internal stage values at the n“‘ step are calculated as,
Y1 =Y,
v, _yn_ﬁh(l 2 ]Fl+h[1_mjﬁ+h[57_zﬁja_hz[mﬁjeﬁhz[61_Zaf} 2
64 4 960 240 15 1920 4 1920 960

1 1572 1 32 57 22 1 2 143 f
Y, =y, +h =+ F+h —- F,+h —+ F+h? ——+-—— (G, -h’? —
4 960 15 64 240 15 1920 120 1920 4

Y, =yn1+h(i+7\/—J +h( L 7\/_J h(ﬂjF3+h2[£]G ~h (\/EJGZ
10 60 10 60 5 48 48

where the stage derivatives are calculated as follows:

F, = f(x,_, + h(0),Y,),
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The implicit second-derivative Runge-Kutta collocation method has order p = 5. Writing the method in an extended
Butcher Tableau (16), we have

2-\2 (128+90+/2) (384 -314+/2) (448 — 256+/2) —143+ 8042 61—46+/2 0
4 1920 1920 1920 1920 1920

2+42 (384+3144/2) (128 —90+/2) (448 + 256+/2) 1+16+/2) (143 +80+/2) 0
4 1920 1920 1920 1920 1920

1 (32+144/2) (32-14+/2) 56 —7-6v2 —7+62 0
120 120 120 120 120

(32 +14+/2) (32-14+/2) 56 -7-642 —7+6/2 0
120 T 120 120 120 120

2.2 A Sixth Order Implicit Second-Derivative Runge-Kutta Collocation Method

Next, as the order of the method being sought for increases, the algebraic conditions on the coefficients of the method
become increasingly complicated. However, we consider again the two end points of the integration interval as
collocation points in addition to the Gaussian interior collocation points, obtained in the same manner as in method

(18) with P, (X) =0, Legendre polynomial of degree 3 as follows,

1 43

n+u? u
2 4

which are also valid in the interval [Xn , Xn+1], expanding (2) to obtain the proposed continuous scheme in (13) takes

the following form:

y( ) +h[ﬂ1 n+u +ﬂ2 ) n+w +ﬂ3(X) 1:n+v]-|_hz[yl(x)gmu +72(X)gn+w +73(X)gn+v]

(21)
where
a,(x) =1
2h3 —104/3-15-201t +/3 - 75t +120 t2+/3 + 500 t2 —1050 t* —160 t3+/3
ﬂl( )_ 4 4 5 t
135 | 1641434960t —320 ¢

ﬂz()— (5 80t+480t> —640t° +256t*)

2h\/_[

135

10+/3+15-20t +/3 + 75t +120t2~/3 =500 t? +1050 t*

Bs(X) =~
: +641*/3-9601* +320 5

—160t3\/§}
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ht (30+15v3 150t h+/3-330t h+1240 t°h + 420 t>h /3 - 2220 t*h— 480 t°h /3
71(X)=_7 . . 5
540 +192t*h +/3+1920t*h—640t°h

¥, (X) = h4(256t h—768t*h+816 t*h—352th+ 51t h+3)

ht (=30 +15v3+330 th—150 t h+/3 + 420 t2h /3 —1240 t2h - 480 t°h /3 + 2220 t°h
73(X)=7 . . 5
540( +192 t*h +/3 1920 t*h + 640t°h

Evaluating the proposed continuous scheme y(X)in (19) at the points X =X 4, X, and X, (where u and v are

the zeros of Legendre polynomial of degree 3) we obtain the block hybrid discrete scheme as follows:

h 2
= ——|(48f 4f ., +48f N —
yn+l yn + 180[ 8 n+u +8 + 8 n+v] 80[ 3gn-*—u 3gn+v]

Vo = Yo+ 34260 (4608 -1396+3)f,,, + (8064 - 46083 ), , + (4608 - 2636+3)f,,, |

s 34';260 - (271-96v3)g, - 40g,., + 161-963)g, .,

Yoo =y + tho (576 + 280V3)t, , +10087,,,, + (576 — 280+/3)f, ., |

+ 42;0 [bo+12+3)g, ~140g,,, +(10-123)g, ., ]

h [l4608+ 26363 )1,., + (8064 + 4608+3)r,.., + (4608 + 13063 )t ]
h2
34560

yn+v = yn +

. 161+ 963)g, —40g,.,, - (271+ 9643 g, |
(22)

Solving the block hybrid discrete scheme simultaneously, we obtain the higher order implicit second-derivative
Runge-Kutta collocation method and writing in the form of (15) as follows:

4 4 V3 V3
= h F, +h F, +h G, —h? —= |G 22
Yo =Yna ¥ (1 ] i (15) (15) i (180] : (180} 2 (222)

where the internal stage values at the n" step are computed as:

Yl =Y,

Y,y o+ h3_349\/_ 1+hl_2‘/§ F2+h£_659\/§ F,
15 8640 30 15 15 8640

G, —hz(ijsz 4+ n2| 161 —ﬁ G,
34560 360 180 34560 360

Y, =YyY,,+h £+£ F, +h e F, +h i—ﬂ F;
15 108 30 15 108

h2 i+£ Gl—hZ(LJGzﬁLhZ i_ﬁ G,
432 360 216 432 360
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Y,=Yy,.+h £+ 659+/3 F +h l+& F, +h £+349ﬁ F;
15 8649 30 15 15 8640

h{szltg;o N 1;53}31 B hz[séJGz B hz[si;éo N ej/joj

Yo=Y, .+ h(ijﬁ + h(l)Fz +(ijF3 +h? V3 G, —h? V3 G,
15 15 15 180 180

where the stage derivatives are calculated as follows:

Engineering & Computer Sciences

F, = f(x,, +h(0),Y,),

F,=f [an + h[i — EJ,YZJ,
2 4
F; = f[xn_l + h[%),Y?,],

F,=f [xnl + h[l + EJ,Y4],
2 4

F, = f(x,, +h®@,Ys)

The implicit second-derivative Runge-Kutta collocation method has order p = 6. Writing the method in an extended
Butcher Tableau (16), we have

2-V3 | 4608-13961/3  8064-4608V3  4608-2636v3 () | —(271-96V3) —40 161- 9643 0
4 34560 34560 34560 — a0 34560 34560
ES 576 + 280+/3 1008 576 — 280~/3 0 10 +12+/3 —-140 10-124/3 0
2 4320 4320 4320 4320 4320 4320
2++/3 | 4608+2636v3  8064+4608v3  4608+1396v3 () | 161+96V3 —40 -(211+9%63) Q
4 34560 34560 34560 34560 34560 34560
1 48 84 48 ([ E] 0 -3 0
180 180 180 180 180
48 84 48 0 J3 0 J3 0
180 180 180 180 180

3. ANALYSIS OF THE IMPLICIT SECOND-DERIVATIVE RUNGE-KUTTA COLLOCATION METHODS

3.1 Order, Consistency, Zero-stability and Convergence of SDRKC Methods
With the multistep collocation formula (2) we associate the linear difference operator £ defined by

y(x):h]= Zoa s (X)y(x+ jh)+ hioﬂ,- (X)y'(x+ jh)+ hZZt‘,yj (x)y"(x+ jh) (22b)

j=0

where y(X)is an arbitrary function, continuously differentiable on [a, b], following Yakubu [2010], we can write the
terms in (20b) as a Taylor series expansion about the point X to obtain the expression,

A[y(xk h]= Cy(x)+ C,hy(x) + C,h2y"(x) -+ C,hPy P (x) + -
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Where the constant coefficients Cp , P=0,1, 2,...are given as follows:
r
=22,
=0
C, =2 je
-1
r B S
C,=2 ia; -2 B
=1 =0

[ZJ “(p :1|ZS:J _1:,- (- 2)'21‘)2 j,p:3,4,...

i=0 J=

According to Yakubu [2010], the multistep collocation formula (2) has order p if
. 1
(y(xyh]=0(h®¥)c, =C, =---C, =0,C,, #0.

Therefore Cp 1 is the error constant and Cp+1h p*ly(p”) is the principal local truncation error at the point X (Chan

and Tai [2010]). Therefore, the order and the error constants for the two methods constructed are represented in the

Tables below.

TABLE 1: Order and error constants of SDRK collocation methods
Order and Error Constants of the ISDRK method for (19)

Order (p) Error Constant (Cp,q)
-7
> 1920
: -11 V2
320 60
5 -1 V2
320 60

TABLE 2: Order and error constants of SDRK collocation methods
Order and Error Constants of the ISDRK method for (21)

Order (p) Error Constant (Cp1)
17
6 143360
6 51-27+/3
4480
51
6 35840
. 471 8093
4480 57344
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Definition 3.1. According to Yakubu and Kwami [2015], The implicit second-derivative Runge-Kutta collocation (18)

and (20) are said to be consistent if the order of the individual method is greater than or equal to one, that is, if P >1.

(i) p()=0and
(i) p'(M) =0o(), where p(z) and o(z) are respectively
the 1st and 2nd characteristic polynomials.

Definition 3.2. According to Yakubu et,al. [2010], The second derivative Runge-Kutta collocation methods (18) and
(20) are said to be zero-stable if the roots

i=0

p(1)= det{zk: Aiﬂ"l} =0

Satisfies ‘ﬂ.j ‘ <1, j=1 2,..., k and for those roots with ‘ftj ‘ =1, the multiplicity does not exceed 2.

Definition 3.3. According to Yakubu etal. [2010], The necessary and sufficient conditions for the SDRK collocation
methods (18) and (20) to be convergent are that they must be consistent and zero-stable. Hence, our methods are
convergent.

3.2. Stability regions of the SDRK collocation methods
In this paper, the stability properties of the methods are discussed by reformulating the block hybrid discrete schemes
as general linear methods by Butcher [2014] and Butcher and Hojjati [2005]. Hence, we use the notations introduced

by Butcher and Hojjati [2005], where a general linear method is represented by a partitioned (S + I‘)X (S + r)matrix
(containing A,U, B and V),

[n] [n]
Y R RUA ) n=12,...,N (23)
y(nfl) B V y[n]

Where
Yl[n] yl[n—l] f (Yl[n]) yl[n]
n [n—1] [n] [n]
y [n] Y, Ly = y, , f(Y [n]) f(Yz ) Ly = Y2 ,
y [l y [ f(Y [n]) y [
B | e—
00 1 0 0 HoETH
= y = y B = 0 0 ] V = 0 O I !
A B O u c—-u
L 0 0 I-@6
and e =[1,....1].
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Hence (21) takes the form

Y, nf (v,™)]
y, [ hf (Yz["])
v, A UTlnt(y,™)
y," BV ]ly ™
y," y,"™
_yr[n] | _yr[nfl] |

Engineering & Computer Sciences

(24)

Where r denotes quantities as output from each step and input to the next step and s denotes stage values used in the

computation of the step Y;,Y,,..

.+ Y. The coefficients of these matrices A, U, B, and V indicate the relationship

between the various numerical quantities that arise in the computation of stability regions. The elements of the matrices
A /U, B, and V are substituted into the stability matrix which leads to the recurrent equation

yr T =M(z)y",n=123,...,N-1,Z = 4h

where the stability matrix
M(z)=V +zB(l - zA)"'U

and the stability polynomial of the method can easily be obtained as follows:
p(n,2) = det{r(A—Uz-Vz?)-B)

The absolute stability region of the method is defined as

R=xeC:p(n2)=1=n<1.

Computing the stability functions gives the stability polynomials of the methods as follows:

9,2 1091 29,05 LIST pps, 2 181, o +—r222f I L e B LR O
R(Z)Z 40 462400 40 54400 544 1700 2720 5440
9 . 9 . 29, I67 L B, 9, o 3 oo 30,
40 231200 40 27200 544 850 2720 2720 [253)
and
C 2oty By 8 pape, 109 Las e P23+ 208 3,3 L s
15 30 4320 51840 41472 8640 3840
37 ez, 28 5 oo, T au 29 L, o5 803 y
- 34—+ —r*+——r J3- J3- J3
R(z) = 1920 4320 768 17280 8640 3240 8640 51840
25,19 . 60 , 109 . M5 .- 803 , oo
—ft Tty 20 g Ty 2 3
15 30 2160 17280 13824 f 8640 f 960 f 960 f
S S L B SR AP P S A S 2’\3- 803 rv3- 1 r'z*yJ3
2160 256 4320 4320 1080 8640 12960 (25b)

which are plotted to produce the required graphs of the absolute stability regions of the methods as displayed in Figures

below:
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o70 -60 -50 -40 -30 -20 -10 0 10
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FIGURE 1: Regions of absolute stability of method (19)
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FIGURE 2: Regions of absolute stability of method (21)

Remark: 3.4. The stability regions contain the entire left half complex plane. Clearly, the methods are L-stable,
therefore, the methods are A-stable and in addition equations (25a) and (25b) satisfy Iimz_m R(Z) =0.

4. NUMERICAL EXPERIMENTS

In this section, we test the effectiveness and validity of the newly derived methods (19) and (21) by applying to some
highly stiff systems of initial value problems of the form (1).

Preliminary numerical experiments have been carried out using a constant step size implementation in Matlab. The test

examples are some systems of ordinary differential equations written as first order initial value problems. We solved
these systems and compared the obtained results side by side in Tables.
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Example 1:
We consider a nonlinear stiff problem (Chemostat and Micro Organism Culturing Problem)

y; = —1.690372243y, —0.001190476190y,
y, =101.7684513y,
y,(0)=y,(0)=0.1 0<x<1000, h=0.1with Stiffness ratio of 10°

Chemostat is a vessel into which nutrients are pumped to feed a micro organism with limited
Concentration of micro in the vessel.

Example 2:
The second test problem is highly Stiff Linear Systems

yl =—29998y, —59994y,
y, = 9999y, +19997y,

y,(X) = (1/9999)(299976 0 _1999&*) y,(0) =1
Y, (X) = -7 %" e~ y,(0)=0

Exact

FIGURE 3: Solution Curve of Problem 1 Solved with ISDRK method (19) of order 5
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FIGURE 4: Solution Curve of Problem 1 Solved with ISDRK method (21) of order 6

TABLE 3: Absolute error of problem 2 solved with ISDRK method (19) of order 5

h=0.1 Exact Solution Numerical Solution Absolute Error(y'-yn')

X yl y2 Y1 y2 yl y2

20 -2.7067e-001 | 1.3534e-001 | -2.7156e-001 1.3578e-001 | 8.9265e-004 | 4.4633e-004
40 -3.6631e-002 | 1.8316e-002 | -3.6873e-002 1.8437e-002 | 2.4201e-004 | 1.2101e-004
60 -4.9575e-003 | 2.4788e-003 | -5.0067e-003 2.5034e-003 | 4.9210e-005 | 2.4605e-005
100 | -9.0800e-005 | 4.5400e-005 | -9.2307e-005 | 4.6154e-005 | 1.5072e-006 | 7.5358e-007
200 | -4.1223e-009 | 2.0612e-009 | -4.2603e-009 2.1301e-009 | 1.3799e-010 | 6.8993e-011
240 | -7.5503e-011 | 3.7751e-011 | -7.8546e-011 3.9273e-011 | 3.0428e-012 | 1.5214e-012
260 | -1.0218e-011 | 5.1091e-012 | -1.0665e-011 5.3325e-012 | 4.4686e-013 | 2.2343e-013
300 | -1.8715e-013 | 9.3576e-014 | -1.9663e-013 | 9.8314e-014 | 9.4750e-015 | 4.7375e-015
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FIGURE 5: Solution Curve of Problem 2 Solved with ISDRK method (19) of order 5

TABLE 4: Absolute error of problem 2 solved with ISDRK method (21) of order 6

h=0.1 Exact Solution Numerical Solution Absolute Error(y'-yn')
* yl y2 yl y2 yl y2
20 -1.6015e-15 | 8.0074e-16 -1.1864e-15 5.9320e-16 6.3825e-22 3.1912e-22
40 -1.3112e-15 | 6.5559e-16 -9.7134e-16 4.8567e-16 5.2553e-22 2.6277e-22
60 -1.0735e-15 | 5.3675e-16 -7.9527e-16 3.9763e-16 4.3271e-22 2.1636e-22
100 | -7.1959e-16 | 3.5979e-16 -5.3308e-16 2.6654e-16 2.9333e-22 1.4666e-22
200 | -2.6472e-16 | 1.3236e-16 -1.9611e-16 9.8055e-17 1.1092e-22 5.5459e-23
300 | -9.7386e-17 | 4.8693e-17 -7.2145e-17 3.6073e-17 4.1911e-23 2.0956e-23
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FIGURE 6: Solution Curve of Problem 2 Solved with ISDRK method (21) of order 6

CONCLUSION

The purpose of the present paper has been to introduce a special class of implicit second-derivative Runge-Kutta
collocation methods suitable for the approximate numerical integration of systems of ordinary differential equations.
The derived methods provide an efficient way to find numerical solutions to systems of initial value problems when the
second derivative terms are cheap to evaluate. We present two new methods of orders five and six. We also presented
summary of numerical comparisons between the new methods on a set of two systems of initial value problems.
Chemostat and Micro Organism Culturing Model. This model is often used to study the specific microbial interactions
or parameters associated with infection and disease. From the solution curves we observed that there is a steady culture
of the Micro Organism and our method was able to maintain the steady culture just like the ode 23. The numerical
comparisons as well as establishing the efficiency of the new methods show that the order five method and the order
six method shows more accuracy on all the problems considered in the paper.

ACKNOWLEDGMENTS
The author is indebted to the referees for their helpful suggestions and contributions to the completion of this paper.

REFERENCES

[1] Adesanya, A. O., Fotta, A.U., & Onsachi, R.0. (2016), Runge-Kutta Collocation Method for the Solution of First Order
Ordinary Differential Equations. Journal of Nonlinear Analysis and Differential Equations, Vol. 4, no. 1, 17-26.

[2] Akinfenwa, O.A., Abdulganiy, R.I, Akinnukawe, B.I,, Okunuga, S.A. &Rufai,U.0. (2017), Continuous L-Stable Multi-
Derivative Hybrid Implicit Runge-Kutta Method of Order Five for the Integration of Stiff Problems, International
Journal of Management and Applied Science. Volume-3, [ssuel. ISSN: 2394-7926.

[3] Butcher JC. Order and stability of Runge-Kutta methods, Nanjing University Seminars, May, 2014.

[4] Butcher, ]J.C. &Hojjati, G. (2005), Second Derivative Methods with Runge-Kutta Stability, Numerical Algorithms, 40

415 - 429.
VOLUME 1 ISSUE 1



International Research Publications Engineering & Computer Sciences
[5] Chan,R.P.K. & Tsai, A.Y.]. (2010), On Explicit Two-derivative Runge-Kutta Methods, NumerAlgor 53,171-194.

[6] Donald,].Z., Skwame, Y. & Dominic, R. (2015), Reformulation of implicit one-step Legendre polynomial Hybrid
Block Method in form of implicit Runge-Kutta collocation methods for the solutions of first-order ordinary
differential equations.ADSUJSR, 03(2):356-367.

[7] Markus, S. &Yakubu, D.G. (2016), Application of Second Derivative Runge-Kutta Collocation Methodsto Stiff
Systems of Initial Value Problems. Leonard Journal of Science. Vol-3, 43-66

[8] Yakubu, D. G. (2003), Single-step Stable Implicit Runge-Kutta Method Based on Lobatto Points for Ordinary
Differential Equations. Journal of the Nigerian Mathematical Society, 22, 57-70.

[9] Yakubu, D.G., Hamza, A. Markus, S., Kwami, A.M. &Tumba, P. (2010), Uniformly Accurate Order Five Radau-Runge-
Kutta Collocation Methods. Abacus Journal of Mathematical Association of Nigeria, Mathematics series, 372A75-94.

[10] Yakubu, D.G., Manjak, N. H., Buba S.S., &Maksha, A. I. (2011), A Family of Uniformly Accurate Order Runge-Kutta
Collocation Methods, Journal of Computational and Applied Mathematics, Vol.30, No.2, Pp 315-330.

[11] Yakubu, D.G.&Kwami, A.M. (2015), Implicit Two- Derivative Runge-Kutta Collocation Methods for Systems of Initial
Value Problems. Journal of the Nigerian Mathematical Society. 34(2):128-142.

[12] Yakubu, D.G., Kumleng, G.M., and Markus, S.(2017), Second derivative Runge-Kutta Collocation Methods based on
Lobatto nodes for stiff systems. Journal of modern methods in numerical mathematics 8:1-2, page 118-138.

[13] Yusuf, S.,, G.M Kumleng & Donald J.Z. (2019), Implicit Second-Derivative Runge-Kutta Collocation Methods of
Uniformly Accurate Order 3 and 4 for the Solution of Systems of initial Value Problems

VOLUME 1 ISSUE 1



