

Empirical study on factors impact on traffic congestion: the 31 city-provinces in Vietnam case

Vu Thi Kim Hanh

Van Lang University, Ho Chi Minh City, Vietnam

ABSTRACT

Traffic congestion is a problem that not only of a particular country but also of the whole world, it is happening extremely complicated and dangerous. It causes bad consequences for the economy as well as the people. The objective of this paper is to measure which factors impact on traffic congestion through empirical case of thirty-one city-provinces in Vietnam by using methodology Cronbach's Alpha, Pearson Correlation and Multinomial logistics regression. The main results are Population of Ben Tre province is likely to slightly impact on traffic congestion that for every unit increase on Population of Ben Tre province, the probability of Population of Ben Tre province slightly impacts on traffic congestion is changed by a factor of 935.946 increasingly. Urban residents of Quang Nam province are likely to heavily impact on traffic congestion which for every unit increase on Urban residents of Quang Nam province, the probability of Urban residents of Quang Nam province heavily impacts on traffic congestion is changed by a factor of 15.796 increasingly. Yen Bai province is likely to slightly impact on traffic congestion which for every unit increase on Urban residents of Yen Bai province, the probability of Urban residents of Yen Bai province slightly impact on traffic congestion is changed by a factor of 165568.300 increasingly.

(1) INTRODUCTION

Traffic congestion is a painful reality not only in a certain country but also in every country in the world. Traffic congestion is a global disaster that billions of people around the world have to accept to live with it every day. While each individual has to struggle when they go out, especially in the rush hours, governments and traffic experts themselves are still looking for solutions, but they have not been able to completely solve the traffic congestion problem yet. The truth is the situation in any countries that congested traffic is come from and become congested bottlenecks that makes participants traffic can't go forward, and also can't be able to get back in the rush hour during the long line of many kilometers in the congested traffic, especially to wait for turning to pass the highway toll stations, and it is worse in the holidays. While, in Hanoi capital or Ho Chi Minh City, Vietnam, many people take hours from home to work, which is the main cause make them to be late at working places every morning, in Sao Paolo, Brazil where traffic disaster is much more terrible. According to many of elaborate studies by the Centre for Hazard Analysis at Harvard University, US, the situation of traffic jams in eighty-three of the largest metropolitan areas in the United States that led to 2,200 sudden deaths in 2010, causing an increase of the health budget is 18 billion USD. In the "golden era" of the car industry in the 1960s, millions of families in Europe and the United States simultaneously switched to use cars as cars were cheaper at that time, creating a huge challenge to the available transportation system of the world. Under a world-wide perspective, traffic congestion is really presented everywhere. From European countries with aging populations, good social discipline and good social order to young, dynamic and modern cities in Asia. From old urban areas to completely new cities are meticulously planned.

KEYWORDS

traffic congestion; Vietnam; population; urban residents

CORRESPONDING AUTHOR* Vu Thi Kim Hanh

It can be affirmed certainly that at present there is no possible solution which can be proven to solve completely and permanently the problem of traffic congestion in busy cities, especially big cities. if possible, such a solution that can be able to be come in the future, when we accept to live with traffic congestion and improve it instead of trying to hope to delete it completely.

The congestion phenomena propagating on the road network of large cities have a major impact on the development of traffic patterns. There is no method has been developed that takes traffic information into account for forecasting in situations are complex processes taking place on the road network of the city yet [1]. Traffic congestion has major negative impact on transport sector and creates a massive increase in the transportation cost. Congestion cost if evaluated accurately that can help wider aspects of the policy and planning and thus by providing potential solutions to the traffic congestion problem. The case of the state of Kerala, India which prevail heterogeneous traffic conditions, where the private vehicles such as two wheelers and car constitute an average share of 75% of total traffic and which has the maximum share of traffic compared to public vehicles [2]. Traffic congestion has been a serious menace in under-developed, developing and developed countries of the world. Almost countries are struggling on how to deal with the issue of road traffic congestion. Johannesburg is a highly populated city situated in the Gauteng province of South Africa, where is famous for economic prowess and sophisticated infrastructure. However, the big drawback of living in Johannesburg is the traffic congestion. Traffic congestion is not only in Johannesburg but also hindrance to any developing society. In the past few decades, the South African Government spent millions of Rands on state-of-the-art traffic signal equipment [3].

The object of this paper is to assess thirty-one city-provinces consists of three hundred and then independent variables impact on traffic congestion by using methodology Cronbach's Alpha, Pearson Correlation and Multinomial logistics regression. Paper has eight sections which are introduction is section 1, section 2 is literature review, methodology will be in section 3, section 4 will present introduction of thirty-one City-Provinces in Vietnam, data source will be in section 5, section 6 will illustrate study results, section 7 is discussion and conclusion will be in section 8.

(2) LITERATURE REVIEW

Recent discoveries and new innovative methods in intelligent transportation systems have proven that traffic congestions at an un-signalized road intersection are now becoming a problem of the past, an instance is in Johannesburg roads in the Gauteng province of South Africa [3]. Khulna City, Bangladesh, Central Business Districts areas with breakdown flow have the worst congestion. Inadequate parking facilities, illegal road occupancy by roadside vendors, and street parking decrease 32% to 82% of the road efficiency in different areas. Congestion occurs mostly between 6.00 PM and 9.00 PM. A rapid increase of vehicle population, poor public transportation, behavior of pedestrians, illegal road occupancy, and fragile enforcement of laws that are leading the traffic condition of Khulna towards an unsustainable future [4]. Traffic congestion and abundance - spatial configuration of urban land uses have correlation. while contiguous residential development was correlated with less congestion, high degrees of polycentricity for both high-intensity and low-intensity urban land uses were associated with more congestion. Urban morphology shows more substantial influence on overall congestion than congestion in rush-hours [5]. Some systems is proven that can reduce the traffic congestion and reducing the total charging time at the charging stations; firstly is a novel dynamic traffic congestion pricing and electric vehicle charging management system for the internet of vehicles in an urban smart city environment, secondly is a system that rewards the drivers that choose to take alternative congested-free ways and congested-free charging stations, and thirdly is a token management system that serves as a virtual currency, where the vehicles earn these tokens if they take alternative non-congested ways and charging stations and use the tokens to pay for the charging fees [6]. There are some proposes a complete framework to resolve traffic congestion are for two city scales in order to compare different trip densities, that is a city scale of 25 km2 with a total market of 11,235 shareable trips for the medium-scale network and a city scale of 80 km2 with 205,308 demand for service vehicles for the large-scale network over a 4-hour period with a rolling horizon of 20 minutes. The solutions are measured using a dynamic trip-based account for the congestion effect [7]. Intelligent vehicles give the opportunity to improve the issue of traffic congestion by identification and prediction through the huge data generated are come from individual vehicles that are collected by GPS. The machine learning approach on generated vehicle data through GPS and applying the Gaussian process in machine learning for prediction of traffic speed [8].

To avoid traffic congestion is to distribute traffic in the street network in a system-optimal manner which can be calculated by a centralized traffic management system to be communicated as route advice. Drivers really tend to remember the extreme experiences on related to transport. However, the affective quality of the events which are remembered by drivers could neither explain the affective forecast of upcoming events nor the driver's route choice decision. Thereby, it was found that drivers were generally more willing to face traffic congestion than to consider bypassing it to another turning-streets [9]. A novel Knowledge Graph reasoning framework is introduced to predict the real-time propagation pattern of congestions on traffic network, using real-time traffic state data [10]. Traffic congestion is a major problem in almost cities in Ghana, especially in market centers, a decrease in productivity and reduction in sales are by delayed caused by traffic jams. Study is revealed that bad attitude of drivers, traders, and pedestrians, Road Traffic Crashes, and poor road designs were the main reason causing of traffic congestion. Traffic congestion are decreasing sales and productivity and cause stress. There are recommends that authorities should have program in terms of public education, strict enforcement of road traffic regulations, and provision of adequate parking spaces to help manage traffic congestion [11]. In the Hague, Netherlands, besides the positive effect of the autonomous driving capabilities of shared autonomous vehicles help reduce traffic congestion, it also creates negative effect by stopping on the curb-side to drop off passengers. The dedicated lanes design was unsuccessful at reducing this congestion caused shared autonomous vehicles [12]. Traffic congestion is an important issue that have negative impact on socio-economic problem that swelled in the last few decades. The movement of people, length of trips, quality of life, and the economy of countries are also impacted. Intelligent transportation systems, Hidden Markov Models are suggested to be used as a solution to solve traffic congestion [13]. The proposed models for traffic congestion that may has the potential impact to long term congestion planning which provided by decision makers with the full probabilistic behavior of congestion emerging from their decisions, even when there is only minimal statistical information is available [14]. Algorithms including decision tree, logistic regression and artificial neural network are suggested to predict traffic congestion, these models can be further improved by linking the road condition database with satellite system [15]. In Jakarta, Indonesia, Twitter is one of the social media with text and image information and Support Vector Machine that can be used as a source of information to detect traffic congestion in real-time [16]. In Austria, a approach consisting in the analysis of separate traffic lanes is suggested to be used, this approach is studied and proven that it provides better insights into the congestions patterns and their causes on alpine motorways and might be used to evaluate traffic management measures more accurately and reliably than the standard technique [17]. Traffic congestion is problem not only in urban cities and county but also in coastal urban roads. For instance, in traffic congestion on the coastal Othonos-Amalias Avenue, in Patras city centre, which leads to the port of Patras. Traffic congestion is common during peak periods and is a recurring phenomenon in morning and noon at work trips and afternoon at leisure trips for hours on this road. Intelligent Transportation Systems and Variable Message Sign are studied and suggested to be used for realizing and be diverted to alternative routes, avoiding the congested coastal road [18]. VANET networks is a platform for vehicle-to-vehicle to be used to transmit information which is being suggested to use as solution in terms of congestion in road traffic presents itself as a very persistent problem in urban areas [19].

(3) METHODOLOGY

(3.1) Study framework

The relation between ten independent variable groups and dependent variable Traffic congestion

(3.2) Variables

TABLE 1: Independent variables Matrix of thirty-one City – provinces

No	Independent Variables Cities / Province name	Number of passengers transported (Million passengers/km)	Volume of freight carried (Million tons/km)	Population growth rate (%)	Immigration rate (‰)	Emigration rate (‰)	Migration rate (‰)	Population (Thousand people)	Urban residents (Thousand people)	Area (Km2)	Population density (thousand people/km2)
1	LONG AN (LAN)	LAN ₁	LAN ₂	LAN ₃	LAN ₄	LAN ₅	LAN ₆	LAN ₇	LAN ₈	LAN ₉	LAN ₁₀
2	TIEN GIANG (TGG)	TGG1	TGG2	TGG3	TGG4	TGG5	TGG ₆	TGG7	TGG8	TGG ₉	TGG10
3	DONG THAP (DTP)	DTP_1	DTP ₂	DTP ₃	DTP ₄	DTP ₅	DTP ₆	DTP ₇	DTP ₈	DTP ₉	DTP ₁₀
4	BEN TRE (BTE)	BTE_1	BTE ₂	BTE ₃	BTE ₄	BTE ₅	BTE ₆	BTE7	BTE ₈	BTE ₉	BTE ₁₀
5	CAN THO (CTO)	CTO ₁	CTO ₂	CTO ₃	CTO_4	CTO ₅	CTO ₆	CTO7	CTO ₈	CTO ₉	CTO ₁₀
6	HO CHI MINH (HCM)	HCM1	HCM ₂	HCM ₃	HCM ₄	HCM ₅	HCM ₆	HCM ₇	HCM ₈	HCM ₉	HCM ₁₀
7	BR VUNG TAU (BRVT)	BRVT ₁	BRVT ₂	BRVT ₃	BRVT ₄	BRVT ₅	BRVT ₆	BRVT ₇	BRVT ₈	BRVT ₉	BRVT ₁₀
8	DONG NAI (DNI)	DNI_1	DNI ₂	DNI ₃	DNI ₄	DNI5	DNI ₆	DNI7	DNI ₈	DNI9	DNI10
9	BINH DUONG (BDG)	BDG1	BDG ₂	BDG ₃	BDG ₄	BDG5	BDG ₆	BDG7	BDG ₈	BDG ₉	BDG10
10	TAY NINH (TNH)	TNH_1	TNH ₂	TNH ₃	TNH ₄	TNH5	TNH ₆	TNH ₇	TNH ₈	TNH ₉	TNH10
11	BINH PHUOC (BPC)	BPC ₁	BPC ₂	BPC ₃	BPC ₄	BPC ₅	BPC ₆	BPC7	BPC ₈	BPC ₉	BPC ₁₀
12	BINH DINH (BDH)	BDH1	BDH ₂	BDH ₃	BDH ₄	BDH5	BDH ₆	BDH ₇	BDH ₈	BDH ₉	BDH ₁₀
13	KON TUM (KTM)	KTM_1	KTM ₂	KTM ₃	KTM ₄	KTM ₅	KTM ₆	KTM ₇	KTM ₈	KTM ₉	KTM ₁₀
14	QUANG NGAI (QNI)	QNI_1	QNI ₂	QNI ₃	QNI ₄	QNI5	QNI ₆	QNI7	QNI ₈	QNI9	QNI10
15	QUANG NAM (QNM)	QNM_1	QNM ₂	QNM ₃	QNM ₄	QNM5	QNM ₆	QNM7	QNM ₈	QNM9	QNM ₁₀
16	DA NANG (DNG)	DNG_1	DNG ₂	DNG ₃	DNG ₄	DNG ₅	DNG ₆	DNG7	DNG ₈	DNG ₉	DNG ₁₀
17	THUA T HUE (TTH)	TTH_1	TTH ₂	TTH_3	TTH_4	TTH_5	TTH ₆	TTH ₇	TTH ₈	TTH ₉	TTH ₁₀
18	QUANG TRI (QTI)	QTI ₁	QTI ₂	QTI ₃	QTI ₄	QTI ₅	QTI ₆	QTI ₇	QTI ₈	QTI ₉	QTI ₁₀
19	QUANG BINH (QBH)	QBH1	QBH ₂	QBH ₃	QBH ₄	QBH₅	QBH ₆	QBH ₇	QBH ₈	QBH ₉	QBH10
20	HA TINH (HTH)	HTH_1	HTH ₂	HTH_3	HTH_4	HTH ₅	HTH ₆	HTH ₇	HTH ₈	HTH ₉	HTH ₁₀
21	NGHE AN (NAN)	NAN ₁	NAN ₂	NAN ₃	NAN ₄	NAN ₅	NAN ₆	NAN ₇	NAN ₈	NAN ₉	NAN ₁₀
22	HUNG YEN (HYN)	HYN_1	HYN ₂	HYN ₃	HYN ₄	HYN5	HYN ₆	HYN7	HYN ₈	HYN ₉	HYN ₁₀
23	HAI PHONG (HPG)	HPG1	HPG ₂	HPG ₃	HPG ₄	HPG5	HPG ₆	HPG7	HPG ₈	HPG ₉	HPG ₁₀
24	HA NOI (HNI)	HNI_1	HNI2	HNI3	HNI4	HNI5	HNI ₆	HNI7	HNI ₈	HNI9	HNI10
25	BAC NINH (BNH)	BNH_1	BNH ₂	BNH ₃	BNH ₄	BNH5	BNH ₆	BNH7	BNH ₈	BNH ₉	BNH ₁₀
26	BAC GIANG (BGG)	BGG1	BGG ₂	BGG ₃	BGG ₄	BGG ₅	BGG ₆	BGG7	BGG ₈	BGG ₉	BGG10
27	PHU THO (PTO)	PTO ₁	PTO ₂	PTO ₃	PTO ₄	PTO ₅	PTO ₆	PTO ₇	PTO ₈	PTO ₉	PTO ₁₀
28	VINH PHUC (VPC)	VPC ₁	VPC ₂	VPC ₃	VPC ₄	VPC ₅	VPC ₆	VPC7	VPC ₈	VPC ₉	VPC ₁₀
29	THAI NGUYEN (TNN)	TNN_1	TNN ₂	TNN3	TNN ₄	TNN5	TNN ₆	TNN7	TNN ₈	TNN9	TNN ₁₀
30	YEN BAI (YBI)	YBI_1	YBI2	YBI3	YBI4	YBI5	YBI ₆	YBI7	YBI8	YBI99	YBI10
31	TUYEN QUANG (TQG)	TQG1	TQG ₂	TQG ₃	TQG ₄	TQG5	TQG ₆	TQG7	TQG ₈	TQG ₉	TQG ₁₀

Source: studied by author

(3.3) Variables explanation

Independent variable 1: Number of passengers who have been transported that multiply by the actual lengh of transported distance, unit is mmillion passengers/km

Independent variable 2: Volume of freight which have been carried that multiply by the actual lengh of transported distance, unit is million tons/km

Independent variable 3: Population growth rate =
$$\left(\frac{\sum_{i=1}^{n} Pit\right) - (\sum_{i=1}^{n} Pit-1)}{\sum_{i=1}^{n} Pit-1}\right) \times 100$$
 (1)

As Equation (1) states:

Where,

P is population of City-Province i

i is called Cities or Provinces, i is is between 1 and 31 [1,31]. In other words, n = 31, i = 1

t is the current year which is called year t

t – 1 is the previous year which comparing with the current year t Unit is %

Independent variable 4: Immigration rate =
$$\left(\frac{\sum_{i=1}^{n} IPit}{\sum_{i=1}^{n} Pit}\right) \ge 1000$$
 (2)

As Equation (2) states:

Where,

P is population of City-Province i

IP is number of immigrated population of City-Province i

i is called Cities or Provinces, i is is between 1 and 31 [1,31]. In other words, n = 31, i = 1

t is the current year which is called year t

Unit is ‰

Independent variable 5: Emigration rate =
$$\left(\frac{\sum_{i=1}^{n} EPit}{\sum_{i=1}^{n} Pit}\right) \ge 1000$$
 (3)

As Equation (3) states:

Where,

P is population of City-Province i

EP is number of emigrated population of City-Province i

i is called Cities or Provinces, i is is between 1 and 31 [1,31]. In other words, n = 31, i = 1

t is the current year which is called year t

Unit is ‰

Independent variable 6: Migration rate =
$$\left(\frac{\sum_{i=1}^{n} MPit}{\sum_{i=1}^{n} Pit}\right) \ge 1000$$
 (4)

As Equation (4) states:

Where,

P is population of City-Province i

MP is number of migrated population of City-Province i

i is called Cities or Provinces, i is is between 1 and 31 [1,31]. In other words, n = 31, i = 1

t is the current year which is called year t

Unit is ‰

Independent variable 7: Population is total number of people of City-Provinces, unit is thousand people *Independent variable 8:* Urban residents are people who live in City-Provinces, unit is thousand people *Independent variable 9:* Area is the area of City-Province, unit is km2

Independent variable 10: Population density is the rate of number of people calculated per km2, unit is thousand people/km2, unit is thousand people/km2

(3.4) Cronbach's Alpha

Cronbach's Alpha is used to measure the reliability between three hundred and ten independent variables which are described clearly by Table 1. For instance, LAN has LAN₁, LAN₂, LAN₃, LAN₄, LAN₅, LAN₆, LAN₇, LAN₈, LAN₉, LAN₁₀, HCM has HCM₁, HCM₂, HCM₃, HCM₄, HCM₅, HCM₆, HCM₇, LAN₈, HCM₉, HCM₁₀, HNI has HNI₁, HNI₂, HNI₃, HNI₄, HNI₅, HNI₆, HNI₇, HNI₈, HNI₉, HNI₉, HNI₉, HNI₁₀.

Cronbach's Alpha (C-Alpha), (Lee Cronbach, 1951)

C-Alpha =
$$\frac{n}{n-1} \left(1 - \frac{\sum_{j=1}^{n} \delta_j^2}{\delta_{ov}^2}\right)$$
 (5)

As Equation (5) states:

Where,

n is number of observed variables, in this paper n = 310 consists of LAN₁, LAN₂, ..., LAN₁₀, ..., HCM₁, HCM₂, ..., HCM₁₀, ..., HNI₁, HNI₂, ..., HNI₁₀, ..., and TQG₁, TQG₂, ..., TQG₁₀. Detail of 310 observed variables which are described clearly by Table 1.

ov is observed variables

$$\begin{split} & \eth_{ov}^2 = \sum_{j=1}^n \eth_j^2 + \sum_{j=1}^n \quad \sum_{z\neq j}^n a_{jz} \\ & z \text{ is } [1, 310] \text{ and } z \neq j \end{split}$$

(3.5) Pearson Correlation (PC)

PC is to be used to check up how strong and which direction of the relations between three hundred and ten independent variables of thirty-one City-Provinces. One City-Province has ten independent variables, meaning thirty-one City-Province has total three hundred and ten independent variables, with a huge number such three hundred and ten independent variables is that impossible to assess Correlation one by one. Whereby, the method is to be used that is calculating the average of ten independent variables into one independent variable which represents one City-Province, so total thirty-one City-Province will have thirty-one independent variables, perspectively.

A PC coefficient has significance in [0,1]

$$PC \text{ coefficient} = \frac{n(\sum X1.X2...,X10) - (\sum X1)(\sum X2),...,\sum X31)}{\sqrt{n[\sum X1^2 - (\sum X1)^2][\sum X2^2 - (\sum X2)^2]...,[\sum X31^2 - (\sum X31)^2]}}$$
(6)

As Equation (6) states:

Where,

n is number of observed variables, in this paper n = 31 including LAN, TGG, DTP, BTE, CTO, HCM, BRVT, DNI, BDG, TNH, BPC, BDH, KTM, QNI, QNM, DNG, TTH, QTI, QBH, HTH, NAN, HYN. In this formula they are call X₁, X₂, X₃, ..., X₂₉, X₃₀, X₃₁, respectively.

 $LAN = X_1 = Average [LAN_1, LAN_2, LAN_3, LAN_4, LAN_5, LAN_6, LAN_7, LAN_8, LAN_9, LAN_{10}]$ TGG = X₂ = Average [TGG₁, TGG₂, LAN₃, TGG₄, TGG₅, TGG₆, TGG₇, TGG₈, LAN₉, TGG₁₀] DTP = X₃ = Average [DTP₁, DTP₂, DTP₃, DTP₄, DTP₅, DTP₆, DTP₇, DTP₈, DTP₉, DTP₁₀]

. TNN = X₂₉ = Average [TNN₁, TNN₂, TNN₃, TNN₄, TNN₅, TNN₆, TNN₇, TNN₈, TNN₉, TNN₁₀] YBI = X₃₀ = Average [YBI₁, YBI₂, YBI₃, YBI₄, YBI₅, YBI₆, YBI₇, YBI₈, YBI₉, YBI₉] TQG = X₃₁ = Average [TQG₁, TQG₂, TQG₃, TQG₄, TQG₅, TQG₆, TQG₇, TQG₈, TQG₉, TQG₁₀] The detail of thirty-one City-Provinces and their three hundred and ten independent variables are described in Table 1.

(3.6) Multinomial logistics regression

T = 0: T is not impacted by LAN₁, LAN₂, ..., LAN₁₀, ..., HCM₁, HCM₂, ..., HCM₁₀, ..., HNI₁, HNI₂, ..., HNI₁₀, ..., and TQG₁, TQG₂, ..., TQG₁₀. Detail of 310 observed variables which are described clearly by Table 1.

T = 1: T is slightly impacted by LAN₁, LAN₂, ..., LAN₁₀, ..., HCM₁, HCM₂, ..., HCM₁₀, ..., HNI₁, HNI₂, ..., HNI₁₀, ..., and TQG₁, TQG₂, ..., TQG₁₀. Detail of 310 observed variables which are described clearly by Table 1.

T = 2: T is heavily impacted by LAN₁, LAN₂, ..., LAN₁₀, ..., HCM₁, HCM₂, ..., HCM₁₀, ..., HNI₁, HNI₂, ..., HNI₁₀, ..., and TQG₁, TQG₂, ..., TQG₁₀. Detail of 310 observed variables which are described clearly by Table 1.

Logarit for the Impact = Log $\left(\frac{Ti}{Tj}\right)$ Log $\left(\frac{Ti}{Tj}\right)$ = a_{0ij} + $a_{1,ij}X_1$ + $a_{2,ij}X_2$ +... $a_{31,ij}X_{31}$ + f_{ij} (7)

As Equation (7) states:

Therefore,

 $Log\left(\frac{T_{0}}{T_{1}}\right) = a_{01} + a_{1,01}X_{1} + a_{2,01}X_{2} + a_{3,01}X_{3} + a_{4,01}X_{4} + a_{5,01}X_{5} + a_{6,01}X_{6} + a_{7,01}X_{7} + a_{8,01}X_{8} + a_{9,01}X_{9} + a_{10,01}X_{10} + f_{01}$ (8)

 $Log\left(\frac{T0}{T2}\right) = a_{02} + a_{1,02}X_1 + a_{2,02}X_2 + a_{3,02}X_3 + a_{4,02}X_4 + a_{5,02}X_5 + a_{6,02}X_6 + a_{7,02}X_7 + a_{8,02}X_8 + a_{9,02}X_9 + a_{10,02}X_{10} + f_{02}$ (9) $Log\left(\frac{T1}{T2}\right) = a_{12} + a_{1,12}X_1 + a_{2,12}X_2 + a_{3,12}X_3 + a_{4,12}X_4 + a_{5,12}X_5 + a_{6,12}X_6 + a_{7,12}X_7 + a_{8,12}X_8 + a_{9,12}X_9 + a_{10,12}X_{10} + f_{12}$ (10)

As Equation (8), (9), (10) state:

Where

f is other factors beyond 310 independent variables in Table 1 which this paper does not have analysis

X₁ is LAN₁, ..., TQG₁ are number of passengers who have been transported, detail of 31 observed independent variables which are described clearly at column "Number of passengers transported" in Table 1.

X₂ is LAN₂, ..., TQG₂ are volume of freight which have been carried, detail of 31 observed independent variables which are described clearly at column "Volume of freight carried" in Table 1.

X₃ is LAN₃, ..., TQG₃ are population growth rate, detail of 31 observed independent variables which are described clearly at column "Population growth rate" in Table 1.

X₄ is LAN₄, ..., TQG₄ are immigration rate, detail of 31 observed independent variables which are described clearly at column "Immigration rate" in Table 1.

X₅ is LAN₅, ..., TQG₅ are emigration rate, detail of 31 observed independent variables which are described clearly at column "Emigration rate" in Table 1.

X₆ is LAN₆, ..., TQG₆ are migration rate, detail of 31 observed independent variables which are described clearly at column "Migration rate" in Table 1.

X7 is LAN7, ..., TQG7 are population, detail of 31 observed independent variables which are described clearly at column "Population" in Table 1.

X₈ is LAN₈, ..., TQG₈ are rrban residents, detail of 31 observed independent variables which are described clearly at column "Urban residents" in Table 1.

X₉ is LAN₉, ..., TQG₉ are areas, detail of 31 observed independent variables which are described clearly at column "Area" in Table 1.

X₁₀ is LAN₁₀, ..., TQG₁₀ are population density, detail of 31 observed independent variables which are described clearly at column "Population density" in Table 1.

(3.7) Hypothesis: H₁, H₂, H₃

H₁ is T is not impacted by LAN₁, LAN₂, ..., LAN₁₀, ..., HCM₁, HCM₂, ..., HCM₁₀, ..., HNI₁, HNI₂, ..., HNI₁₀, ..., and TQG₁, TQG₂, ..., TQG₁₀.

H₂ is T is slightly impacted by LAN₁, LAN₂, ..., LAN₁₀, ..., HCM₁, HCM₂, ..., HCM₁₀, ..., HNI₁, HNI₂, ..., HNI₁₀, ..., and TQG₁, TQG₂, ..., TQG₁₀.

H₃ is T is impacted by LAN₁, LAN₂, ..., LAN₁₀, ..., HCM₁, HCM₂, ..., HCM₁₀, ..., HNI₁, HNI₂, ..., HNI₁₀, ..., and TQG₁, TQG₂, ..., TQG₁₀.

Detail of 310 observed variables which are described clearly by Table 1.

(4) INTRODUCTION OF THIRTY-ONE CITY-PROVINCES IN VIETNAM

(4.1) Mekong Delta Area in the South Vietnam: Long A province, Tien Giang province, Dong Thap province, Ben Tre, province, Can Tho province

The Mekong Delta which is also called the Mekong Triangle, it is located at the southernmost point of Vietnam. That is the most fertile land which is the largest delta in Southeast Asia. There is a densely distributed river network, small boat trips, free travel in interwoven rivers, immense rice fields, there are four-season fruit orchards with the sweet aroma of tropical fruits and Southern folk delicacies. The Mekong Delta includes 13 provinces which are Can Tho city, An Giang province, Dong Thap province, Long An province, Tien Giang province, Vinh Long province, Ben Tre province, Tra Vinh province, Soc Trang province, Hau Giang province, Bac Lieu province, Ca Mau province and Kien Giang province.

The Mekong River originates in Zadoi County, Tibet Autonomous Prefecture of Yushu ethnic group, Qinghai Province, China. It is called the Lancang River in China. After passing through Yunnan province out of the Chinese border, it flows through Myanmar, Laos, Thailand and Cambodia, and then flows into the East Sea at the estuaries of southern Vietnam. The Mekong Delta is a part of the Mekong River Delta with an area of 40.6 thousand km². It is clocated adjacent to the Southeast region, the North borders Cambodia, the Southwest is the Gulf of Thailand, the Southeast is the East Sea. The Mekong Delta consists of three sub-regions. Upland in the west includes the upstream provinces of the Mekong River which are Dong Thap, An Giang, Can Tho. The western part of Long An, Tien Giang, Vinh Long, Hau Giang and the eastern part of Kien Giang. This area is often flooded in the rainy season by the rising water of the Mekong River. The lowlands in the east coast include the provinces of Ben Tre, Tra Vinh, Bac Lieu, Ca Mau. The eastern part of Long An, Tien Giang, Vinh Long, Hau Giang and the coastal part of Kien Giang, this area is often affected by saline intrusion in the dry season [20].

(4.2) The southeast of Vietnam: Ho Chi Minh City, Ba ria Vung Tau province, Dong Nai province, Binh Duong province, Tay Ninh province, Binh Phuoc province

The Southeast is one of two parts of the South of Vietnam, it also has another short name is usually called by the people of South Vietnam as the East which. The Southeast region has one city directly under the central government is Ho Chi Minh City, and 5 provinces are Ba Ria - Vung Tau, Binh Duong, Binh Phuoc, Dong Nai and Tay Ninh.

The population of the Southeast region accounts for 16.34% of the population of Vietnam, where is the region with the highest population growth rate in the Vietnam country, due to attracting many immigrants from other regions. The Southeast is the most developed economic region in Vietnam, leading the country in terms of exports, foreign direct investment, GDP, as well as many other socio-economic factors, contributing more than two-thirds of annual budget revenue, with an urbanization rate of 62.8%.

The industry-construction sector grows rapidly, accounting for the largest proportion of the region's GDP, the production structure was balanced including heavy industry, light industry and food processing. A number of industries are forming and developing such as petroleum, electronics, and high technology.

The Southeast is an important agricultural growing area of the country, such as peanuts, beans. Tay Ninh is the province with the largest area of sugarcane, pasta, and peanuts which is the strength of the region. The livestock and poultry industry are focused, the fishing industry on fishing grounds brings great economic benefits.

Foreign direct investment of this region leads the country in highlights in the provinces are Dong Nai, Binh Duong and Ho Chi Minh City [21].

(4.3) The Middle Vietnam: Binh Dinh province, Kon Tum province, Quang Ngai province, Quang Nam province, Da Nang city, Thua Thien Hue province, Quang Tri province, Quang Binh province, Ha Tinh province, Nhe An province

The Middle region has many hills and mountains spreading to the sea, dividing the narrow plains. The climate and most of the land are generally harsher than the other two regions. The Middle Region is now divided into 3 smaller regions which are the North Middle Coast, the South Middle Coast and the Middle Highlands with the central city of Da Nang.

Economy of Middle region with a concentration of five key economic provinces that has many advantages of strategic location including human resources, seventeen seaports, fifteen economic zones, twenty industrial parks, two export processing zones, eight airports, two trans-Vietnam highways, East-West economic corridor. The deep-water seaports of Vung Ang - Son Duong in Ha Tinh province, Chan May in Thua Thien Hue province, Tien Sa in Da Nang City, Ky Ha in Quang Nam province and Dung Quat in Quang Ngai province. Industrial parks and export processing are in the absence of domestic and foreign enterprises that attach importance and interest in investment.

The key economic regions of the Middle region include five city - provinces which are Da Nang city, Thua Thien Hue province, Quang Nam province, Quang Ngai province, Binh Dinh province with a total area of about 27,884 km². These economic areas not only play the role of driving force for socio-economic development of the Central and Central Highlands regions, but also play an important role in the socio-economic development strategy of the whole country in terms of geography, economy, politics, culture and national security. As the frontage of the Mekong sub-region where can have trade with countries such as Laos, Cambodia, Thailand, Myanmar and further south Asian countries and southwestern China [22].

(4.4) The Northeast Vietnam: Hung Yen province, Hai Phong city, Ha Noi capital, Bac Ninh province, Bac Giang province, Phu Tho province, Vinh Phuc province, Thai Nguyen province, Yen Bai province, Tuyen Quang province

The North consists of three sub-regions are the North West, the North East and the Red River Delta. Sometimes the two sub-regions of the Northwest and the Northeast are combined into the Northern Midlands and Mountains. The North is located in the northernmost region of Vietnam's territory, bordering China to the north, Laos to the west, and the East Sea to the east. The East-West width is 600 km which is the widest compared to the Central and Southern regions.

It is a place with very favourable geographical position and natural conditions. Natural resources are abundant and diverse, densely populated, and people's ground is high. A place with a long tradition of intensive wet rice cultivation, industrial centre and developed urban systems. The North is a region with a long coastline, a large and important gateway to trade with neighbour areas and the world through Hai Phong seaport. Natural resources including quarries in Hai Phong City, Ha Nam and Ninh Binh provinces.

However, the North is still an area that lacks raw materials for developing industries and always has to import from other regions. A large number of resources are being degraded due to over-exploitation. Due to its location in the tropical and monsoon climate zone, the region's economy in general is also affected by risks caused by natural disasters [23].

(5) DATA SOURCE

Data is time series data in 2005 and from 2007 to 2020 is from General statistics department of Vietnam.

(6) STUDY RESULTS

(6.1) Cronbach's Alpha analysis

		Reliability	Statistics before it	tem deleted	Reliabilit	y Statistics after ite	em deleted
	Citian /		Cronbach's			Cronbach's	
No.	Drovin coo	Cronbach	Alpha Based on	Nofltoma	Cronbach	Alpha Based on	Nofltomo
	Provinces	's Alpha	Standardized	N OI Items	's Alpha	Standardized	N OI Items
			Items			Items	
1	LAN	.511	.829	9	-12.955	-	2
2	TGG	.587	.778	9	.632	.987	6
3	DTP	.171	.255	8	.360	.874	5
4	BTE	.318	.752	8	.347	.928	5
5	СТО	.272	.761	9	.271	.967	4
6	НСМ	.624	356	10	.704	.989	5
7	BRVT	.470	082	10	.539	.916	5
8	DNI	.623	.329	10	.712	.983	5
9	BDG	.838	.660	10	.906	.984	6
10	TNH	.701	.679	9	.775	.994	4
11	BPC	.530	.565	9	.574	.988	6
12	BDH	.569	.811	9	.696	.929	3
13	KTM	.624	.308	10	.731	.994	5
14	QNI	.568	.743	9	.659	.565	4
15	QNM	.673	.784	9	.677	.976	5
16	DNG	.641	.442	10	.725	.956	5
17	TTH	.538	.487	9	.756	.971	5
18	QTI	.392	.773	9	.075	.861	3
19	QBH	.585	.651	9	.720	.994	5
20	НТН	.518	.477	9	.563	.973	6
21	NAN	.478	.740	9	.513	.987	6
22	HYN	.736	.834	10	.831	.983	5
23	HPG	.408	.725	10	.480	.974	6
24	HNI	.750	.538	10	.698	.929	6
25	BNH	.859	.847	10	.967	.987	5
26	BGG	.716	.838	9	.728	.982	6
27	РТО	.741	.820	9	.773	.978	7
28	VPC	.526	.200	9	.631	.884	4
29	TNN	.756	.582	9	.845	.993	5
30	YBI	.769	.842	9	.853	.993	5
31	TQG	.599	.854	9	.323	.985	4

TABLE 2: Cronbach's Alpha Result

Source: study result by author

Table 2 shows result of Cronbach's Alpha before deleted items are LAN = .511, TGG = .587, DTP = .171, BTE = .318, CTO = .272, HCM = .624, BRVT = .470, DNI = .623, BDG = .838, TNH = .701, BPC = .530, BDH = .569, KTM = .624, QNI = .568, QNM = .673, DNG = .641, TTH = .538, QTI = .392, QBH = .585, HTH = .518, NAN = .478, HYN = .736, HPG = .408, HNI = .750, BNH = .859, BGG = .716, PTO = .741, VPC = .526, TNN = .756, YBI = .769, TQG = .599. They are almost between .511 and .859 except DTP = .171, BTE = .318, CTO = .272, BRVT = .470, QTI = .392, NAN = .478 and HPG = .408. However, all coefficients Cronbach's Alpha of thirty-one City-provinces are in [0,1].

Cronbach's Alpha after deleted items are LAN = -12.955, TGG = .632, DTP = .360, BTE = .347, CTO = .271, HCM = .704, BRVT = .539, DNI = .712, BDG = .906, TNH = .775, BPC = .574, BDH = .696, KTM = .731, QNI = .659, QNM = .677, DNG = .725, TTH = .756, QTI = .075, QBH = .720, HTH = .563, NAN = .513, HYN = .831, HPG = .480, HNI = .698, BNH = .967, BGG = .728. Except LAN = -12.955, all of others are in [0,1]. Especially there are HCM = .704, DNI = .712, TNH = .775, KTM = .731, DNG = .725, TTH = .756, QBH = .720, BGG = .728, and HYN = .831, BDG = .906, BNH = .967. According to Lee J. Cronbach (1951) that is to mean Cronbach's Alpha after deleted items are quite qualified except "LAN = -12.955" which will be deleted before doing analysis of Pearson Correlation

TABLE 3: Item-Total Statistics of choosing items

Independent variables	Correcte Total Cor Before	d Item- relation /After	Cronbach Items I Before	's Alpha if Deleted e/After	Independent variables	Correct To Corre Before	ed Item- tal lation e/After	Cronbach Items I Before	's Alpha if Deleted e/After	Independent variables	Correcto To Corre Before	ed Item- tal lation e/After	Cronbach's Items D Before/	s Alpha if eleted /After
LAN ₆	.860	-1.000	.256		BPC ₁₀	.977	.976	.519	.578	HYN ₁₀	.991	.991	.676	.804
LAN ₁₀	.904	-1.000	.461		BDH_1	.858	.899	.241	.272	HPG1	.877	.909	.173	.187
TGG1	.942	.927	.627	.549	BDH ₂	.879	.922	.168	.129	HPG ₂	.871	.913	.542	.509
TGG ₂	.942	.939	.353	.636	BDH ₈	.948	.755	.522	.874	HPG7	.938	.942	.368	.456
TGG7	.927	.946	.494	.700	KTM_1	.934	.955	.430	.545	HPG ₈	.822	.835	.386	.475
TGG ₈	.939	.940	.575	.398	KTM ₂	.975	.985	.610	.783	HPG ₉	.875	.888	.406	.492
TGG ₉	.908	.910	.594	.656	KTM ₇	.974	.983	.474	.615	HPG ₁₀	.881	.887	.390	.479
TGG10	.935	.935	.557	.616	KTM ₈	.955	.972	.588	.733	HNI_1	.915	.970	.724	.630
DTP ₁	.799	.958	-1.565ª	.461	KTM ₁₀	.981	.988	.616	.763	HNI2	.941	.985	.741	.429
DTP ₂	.896	.921	123ª	.122	QNI1	.973	.987	.575	.091	HNI3	.993	.418	.606	.727
DTP ₅	.356	.326	.169	.380	QNI ₂	.987	.993	.106	.124	HNI ₈	.896	.978	.653	.631
DTP ₈	.851	.820	.105	.326	QNI ₃	.994	253	.146	.742	HNI9	.986	.741	.706	.725
DTP ₉	.809	.840	.156	.367	QNI ₈	.976	.647	.567	.713	HNI10	.727	.876	.759	.668
BTE1	.988	.987	.566	.653	QNM ₂	.823	.930	.572	.830	BNH_1	.865	.914	.822	.966
BTE ₂	.992	.992	.131	.150	QNM ₇	.929	.969	.628	.623	BNH ₂	.977	.981	.798	.947
BTE ₇	.860	.860	.289	.331	QNM ₈	.893	.938	.591	.554	BNH7	.980	.978	.798	.949
BTE ₈	.687	.685	.319	.365	QNM ₉	.790	.859	.590	.543	BNH ₈	.925	.943	.830	.980
BTE ₉	.818	.822	.275	.313	QNM ₁₀	.898	.921	.679	.715	BNH ₁₀	.977	.976	.799	.949
CTO ₁	.813	.898	.601	.597	DNG1	.510	.509	.559	.668	BGG1	.839	.861	.690	.667
CTO ₇	.929	.910	.240	.254	DNG ₂	.747	.752	.617	.735	BGG ₂	.946	.927	.521	.497
CTO ₈	.881	.879	.130	.096	DNG7	.969	.969	.556	.663	BGG3	.909	.912	.726	.758
CTO ₁₀	.858	.861	.260	.282	DNG8	.969	.969	.563	.671	BGG7	.962	.950	.627	.634
HCM1	.946	.946	.675	.806	DNG10	.971	.971	.577	.688	BGG ₉	.873	.869	.705	.731
HCM ₂	.989	.989	.396	.475	TTH_1	.796	.822	.155	.573	BGG10	.969	.958	.703	.729
HCM ₁₀	.944	.944	.593	.705	TTH_2	.793	.878	.151	.604	PTO_1	.924	.922	.589	.630
HCM ₇	.935	.935	.556	.662	TTH ₇	.973	.974	.494	.765	PTO ₂	.910	.913	.623	.663
HCM ₈	.912	.911	.580	.691	TTH ₈	.864	.838	.349	.669	PTO ₃	.854	.857	.753	.795
BRVT ₁	.816	.847	.708	.850	TTH ₁₀	.934	.961	.530	.793	PTO ₇	.974	.974	.647	.686
BRVT ₂	.390	.381	.433	.524	QTI1	.824	.697	219ª	.072	PTO ₈	.891	.889	.711	.752
BRVT ₇	.870	.876	.353	.437	QTI ₃	.760	.701	.397	.097	PTO ₉	.849	.851	.752	.795
BRVT ₈	.892	.901	.338	.419	QTI ₁₀	.846	.690	.379	.003	PTO ₁₀	.979	.979	.722	.764
BRVT ₁₀	.882	.889	.413	.504	QBH ₁	.989	.989	.248	.562	VPC ₁	.688	.796	.315	.303
DNI ₁	.990	.990	.609	.736	QBH ₂	.990	.996	.183	.399	VPC ₂	.877	.854	.077	.146
DNI ₂	.983	.986	.385	.472	QBH ₇	.989	.994	.538	.714	VPC ₃	.684	.607	.534	.710
DNI ₇	.989	.992	.537	.653	QBH ₈	.921	.931	.522	.698	VPC ₈	.737	.701	.480	.644
DNI ₈	.779	.803	.578	.702	QBH10	.979	.988	.587	.761	TNN1	.983	.982	.590	.701
DNI10	.989	.992	.614	.741	HTH_1	.968	.969	.311	.384	TNN ₂	.982	.981	.667	.792
BDG1	.986	.986	.784	.874	HTH ₂	.983	.984	.141	.178	TNN7	.962	.964	.684	.805
BDG ₂	.994	.994	.759	.846	HTH ₃	.711	.710	.526	.586	TNN ₈	.980	.981	.701	.825

Independent variables	Correcte Total Corr Before/	d Item- relation /After	Cronbach Items I Before	's Alpha if Deleted e/After	Independent variables	Correcto To Corre Before	ed Item- tal lation /After	Cronbach Items I Before	's Alpha if Deleted e/After	Independent variables	Correct To Corre Before	ed Item- tal lation e/After	Cronbach's Items D Before,	s Alpha if eleted /After
BDG7	.998	.997	.777	.865	HTH ₇	.953	.953	.496	.555	TNN_{10}	.967	.968	.743	.873
BDG ₈	.972	.973	.764	.851	HTH_8	.876	.876	.490	.548	YBI_1	.964	.966	.684	.795
BDG ₉	.757	.761	.848	.944	HTH ₁₀	.956	.956	.521	.581	YBI2	.986	.985	.618	.719
BDG ₁₀	.998	.998	.818	.911	NAN_1	.990	.989	.548	.610	YBI7	.985	.985	.652	.759
TNH_1	.944	.969	.495	.459	NAN ₂	.980	.980	.225	.251	YBI ₈	.944	.945	.746	.868
TNH ₂	.979	.967	.479	.463	NAN ₃	.852	.852	.486	.534	YBI10	.990	.989	.760	.886
TNH7	.991	.988	.646	.768	NAN7	.983	.984	.398	.439	TQG ₂	.877	.936	.327	.725
TNH ₁₀	.990	.987	.696	.847	NAN ₈	.971	.970	.456	.502	TQG7	.923	.939	.547	.140
BPC ₁	.987	.989	.771	.862	NAN ₁₀	.985	.986	.481	.529	TQG ₈	.954	.912	.587	.296
BPC ₂	.993	.993	.404	.454	HYN_1	.966	.970	.565	.675	TQG ₁₀	.930	.948	.598	.327
BPC ₇	.973	.972	.400	.451	HYN ₂	.984	.985	.653	.773					
BPC ₈	.992	.993	.454	.508	HYN7	.992	.991	.678	.806					
BPC ₉	.857	.858	.533	.593	HYN ₈	.845	.846	.716	.854					

Source: Source: study result by author

Table 3 shows Item-Total Statistics of choosing independent variables that have Coefficients of Corrected Item-Total Correlation > Cronbach's Alpha Based on Standardized Items in Table 2 in both before and after items have been deleted, respectively and separately.

Coefficients of Corrected Item-Total Correlation Before items deleted are on the left in the second column from the left, Coefficients are between .356 and .993, they are in [8,9]

Coefficients of Corrected Item-Total Correlation After items deleted are on the right in the second column from the left. Except LAN6 and LAN10 = -1.000 and QNI3 = -.253, they are all between .381 and .996, they are almost in [8,9]

Comparing in Cronbach's Alpha Based on Standardized Items in Table 2 that Coefficients of Corrected Item-Total Correlation Before and After items deleted are > Coefficients Cronbach's Alpha Based on Standardized Items.

Some representatives for instance, Cronbach's Alpha Based on Standardized Items before/after items have been deleted of TGG = .778/.987, HNI = .538/ .929, YBI = .842 / .993

Corrected Item-Total Correlation Before/After items have been deleted TGG1 = .942/.927, TGG2 = .942/.939, TGG7 = .927/.946, TGG8 = .939/.940, TGG9 = .908/.910, TGG10 = .935/.935. HNI1 = .915/.970, HNI2 = .941/.985, HNI3 = .993/.418, HNI8 = ..896/.978, HNI9 = .986/.741, HNI10 = .727/.876. YBI1 = .964/.966, YBI2 = .986/.985, YBI7 = .985/.985, YBI8 = .944/.945, YBI10 = .990/.989

According to Nunnally, J. (1978) that variables have Corrected item -Total correction >= 0.3 is to mean they are qualified; Table 2 presents all independent variables which all have Corrected item -Total correction are between .356 and .993 before and between .381 and .996 after items have been deleted. Comparing in Cronbach's Alpha Based on Standardized Items in Table 2. So, there are 132 independents variable which be presented in Table 4 that have Corrected Item-Total Correlation < Cronbach's Alpha Based on Standardized Items present in Table 2, respectively and separately.

TABLE 4: Total Statistics of deleting items

Independent variables	Corrected Item-Total Correlation	Cronbach's Alpha if Items Deleted	Independen t variables	Corrected Item-Total Correlation	Cronbach' s Alpha if Items Deleted	Independent variables	Corrected Item-Total Correlation	Cronbach's Alpha if Items Deleted
LAN ₁	.729	.643	BPC ₃	714	.539	NAN ₄	.034	.486
LAN ₂	.673	.462	BPC ₄	505	.541	NAN ₅	128	.486
LAN ₃	.483	.519	BPC ₅	575	.543	NAN ₉	911	.488
LAN ₄	.098	.519	BDH ₃	.005	.578	HYN ₃	.812	.745
LAN ₅	618	.522	BDH ₄	190	.578	HYN ₄	337	.746
LAN ₈	.619	.492	BDH ₅	.454	.577	HYN ₅	494	.747
LAN ₉	.778	.517	BDH7	.625	.576	HYN ₆	.330	.745
TGG3	.462	.596	HCM ₉	806	.633	HYN ₉	.832	.743
TGG4	408	.599	BDH ₉	.720	.574	HPG ₃	012	.413
TGG5	596	.600	BDH ₁₀	.367	.577	HPG ₄	510	.414
DTP ₄	225	.176	KTM ₃	748	.633	HPG ₅	503	.414
DTP ₇	789	.300	KTM ₄	312	.637	HPG ₆	287	.414
DTP ₁₀	774	.215	KTM ₅	432	.635	HNI4	.424	.760
BTE ₄	025	.325	KTM ₆	175	.634	HNI5	812	.760
BTE ₅	226	.327	KTM ₉	674	.646	HNI ₆	680	.760
BTE ₁₀	.363	.321	QNI ₄	253	.577	HNI7	459	.760
CTO ₂	.267	.250	QNI ₅	223	.578	BNH ₃	.838	.869
CTO ₃	542	.277	QNI7	176	.578	BNH ₄	.464	.866
CTO ₄	.227	.276	QNI9	.649	.556	BNH ₅	755	.870
CTO ₅	.173	.276	QNI10	.578	.576	BNH ₆	.600	.865
CTO ₉	.654	.262	QNM1	.494	.613	BNH ₉	.139	.869
HCM ₃	710	.631	QNM ₃	.315	.683	BGG ₄	237	.727
HCM ₄	650	.632	QNM ₄	211	.684	BGG ₅	431	.728
HCM ₅	418	.632	QNM5	452	.686	BGG ₈	.719	.692
HCM ₆	491	.632	DNG3	640	.650	PTO ₄	505	.755
BRVT ₃	695	.476	DNG ₄	215	.651	PTO ₅	400	.756
BRVT ₄	443	.479	DNG ₅	164	.650	VPC ₄	171	.534
BRVT ₅	544	.478	DNG ₆	124	.650	VPC ₅	454	.537
BRVT ₆	224	.477	DNG9	752	.650	VPC7	.039	.534
BRVT ₉	666	.481	TTH₃	058	.546	VPC ₉	150	.534
DNI ₃	801	.631	TTH ₄	381	.550	VPC ₁₀	.056	.532
DNI ₄	308	.631	TTH ₅	376	.548	TNN3	.543	.767
DNI5	765	.631	TTH ₉	814	.687	TNN ₄	476	.769
DNI ₆	.001	.630	QTI ₂	.696	235ª	TNN_5	459	.769
DNI ₉	782	.637	QTI ₄	.257	.396	TNN ₉	624	.770
BDG ₃	692	.849	QTI ₅	.120	.396	YBI3	.293	.781
BDG ₄	110	.849	QTI ₉	737	.589	YBI4	481	.783
BDG5	491	.849	QBH ₃	.355	.594	YBI5	.157	.780
BDG ₆	.075	.848	QBH ₄	120	.595	YBI9	.806	.779
TNH ₃	.345	.712	QBH5	116	.596	TQG1	.841	.282
TNH ₄	054	.712	QBH ₉	794	.657	TQG3	.689	.608
TNH ₅	671	.714	HTH ₄	401	.528	TQG ₄	582	.610
TNH ₈	.663	.662	HTH ₅	883	.531	TQG5	.271	.606
TNH ₉	.168	.712	HTH ₉	830	.530	TQG9	.754	.608

Source: study result by author

Table 4 shows Item-Total Statistics of deleting independents variables that have Coefficients of Corrected Item-Total Correlation < Cronbach's Alpha Based on Standardized Items in Table 2 at column 4 from the left "before items have been deleted", respectively and separately.

(6.2) Pearson Correlation

TABLE 5: Result of Pearson correlation analysis

		BTE ₁	BTE ₂	BTE ₃	BTE ₈	BTE ₉
BTE ₁	Pearson Correlation	1	.993**	.859**	.697**	.821**
	Sig. (2-tailed)		.000	.000	.004	.000
	N	15	15	15	15	15
BTE_2	Pearson Correlation	.993**	1	.840**	.721**	.802**
	Sig. (2-tailed)	.000		.000	.002	.000
	Ν	15	15	15	15	15
BTE ₃	Pearson Correlation	.859**	.840**	1	.261	.837**
	Sig. (2-tailed)	.000	.000		.346	.000
	Ν	15	15	15	15	15
BTE ₈	Pearson Correlation	.697**	.721**	.261	1	.379
	Sig. (2-tailed)	.004	.002	.346		.164
	Ν	15	15	15	15	15
BTE ₉	Pearson Correlation	.821**	.802**	.837**	.379	1
	Sig. (2-tailed)	.000	.000	.000	.164	
	Ν	15	15	15	15	15
** Corr	elation is significant at th	ne 0.01 level	(2-tailed).			

		VPC ₁	VPC ₂	VPC ₃	VPC ₈
VPC ₁	Pearson Correlation	1	.835**	.545*	.566*
	Sig. (2-tailed)		.000	.044	.028
	Ν	15	15	14	15
VPC ₂	Pearson Correlation	.835**	1	.613*	.853**
	Sig. (2-tailed)	.000		.020	.000
	Ν	15	15	14	15
VPC ₃	Pearson Correlation	.545*	.613*	1	.560*
	Sig. (2-tailed)	.044	.020		.037
	Ν	14	14	14	14
VPC ₈	Pearson Correlation	.566*	.853**	.560*	1
	Sig. (2-tailed)	.028	.000	.037	
	N	15	15	14	15
** Cori	relation is significant at th	ne 0.01 level	(2-tailed). *	0.05 level	(2-tailed).

		QBH1	QBH2	QBH7	QBH8	QBH10
QBH1	Pearson Correlation	1	.993**	.987**	.918**	.979**
	Sig. (2-tailed)		.000	.000	.000	.000
	Ν	15	15	15	15	15
QBH2	Pearson Correlation	.993**	1	.995**	.942**	.989**
	Sig. (2-tailed)	.000		.000	.000	.000
	Ν	15	15	15	15	15
QBH7	Pearson Correlation	.987**	.995**	1	.960**	.997**
	Sig. (2-tailed)	.000	.000		.000	.000
	Ν	15	15	15	15	15
QBH8	Pearson Correlation	.918**	.942**	.960**	1	.960**
	Sig. (2-tailed)	.000	.000	.000		.000
	Ν	15	15	15	15	15
QBH10	Pearson Correlation	.979**	.989**	.997**	.960**	1
	Sig. (2-tailed)	.000	.000	.000	.000	
	Ν	15	15	15	15	15
** Correl	ation is significant at the	e 0.01 level	(2-tailed).			

		YBI1	YBI2	YBI7	YBI8	YBI10
YBI1	Pearson Correlation	1	.967**	.962**	.911**	.962**
	Sig. (2-tailed)		.000	.000	.000	.000
	N	15	15	15	15	15
YBI2	Pearson Correlation	.967**	1	.988**	.949**	.988**
	Sig. (2-tailed)	.000		.000	.000	.000
	N	15	15	15	15	15
YBI7	Pearson Correlation	.962**	.988**	1	.964**	1.000**
	Sig. (2-tailed)	.000	.000		.000	.000
	N	15	15	15	15	15
YBI8	Pearson Correlation	.911**	.949**	.964**	1	.964**
	Sig. (2-tailed)	.000	.000	.000		.000
	N	15	15	15	15	15
YBI10	Pearson Correlation	.962**	.988**	1.000**	.964**	1
	Sig (2-tailed)	.000	.000	.000	.000	
	Dig. (2 tunicu)					

Table 5 shows Pearson correlation result of separated City-Province for BTE, QBH, VPC and YBI that Statistical significance of QBH, VPH and YBI are all < 0.05 is to mean the input data and the model was built has statistical significance. However, BTE has Statistical significance of BTE₈ and BTE₃ = .346, and BTE₈ and BTE₉ = .164 > 0.05 is to mean the input data and the model was built seems do not have statistical significance

TABLE 6: Result of Pearson correlation analysis for thirty-one City-Province by calculating average each one

	TGG	DTP	BTE	СТО	HCM	BRVT	DNI	BDG	TNH	BPC	BDH	KTM	QNI	QNM	DNG	TTH	QTI	QBH	HTH	NAN	HYN	HPG	HNI	BNH	РТО	VPC	TNN	YBI	TQG
TGG_Pearson	1	.882**	.941**	.885**	.977**	.969**	.930**	.922**	.942**	.940**	.953**	.931**	.949**	.929**	.951**	.952**	.681**	.919**	.964**	.927**	.905**	.860**	.904**	.937**	.923**	.852**	.945**	.959**	.834**
Correlation		.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.005	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
Sig. (2-tailed)	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	12	15	15	15	14	15	15	14	15	15	15
Ν																													
DTP_Pearson	.882**	1	.957**	.892**	.938**	.892**	.969**	.966**	.972**	.965**	.941**	.951**	.963**	.950**	.943**	.964**	.883**	.970**	.928**	.969**	.965**	.948**	.982**	.972**	.955**	.840**	.971**	.950**	.952**
Correlation	.000		.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
Sig. (2-tailed)	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	12	15	15	15	14	15	15	14	15	15	15
Ν																													
BTE_Pearson	.941**	.957**	1	.925**	.972**	.919**	.977**	.985**	.993**	.996**	.991**	.985**	.992**	.986**	.969**	.993**	.784**	.989**	.977**	.987**	.988**	.969**	.984**	.995**	.971**	.828**	.994**	.992**	.948**
Correlation	.000	.000		.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.001	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
Sig. (2-tailed)	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	12	15	15	15	14	15	15	14	15	15	15
Ν																													
CTO_Pearson	.885**	.892**	.925**	1	.915**	.891**	.958**	.942**	.903**	.911**	.919**	.888**	.945**	.857**	.962**	.936**	.816**	.939**	.869**	.913**	.889**	.835**	.927**	.906**	.855**	.932**	.932**	.929**	.845**
Correlation	.000	.000	.000	15	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
Sig. (2-tailed)	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	12	15	15	15	14	15	15	14	15	15	15
N																													
НСМ	.977**	.938**	.972**	.915**	1	.982**	.956**	.949**	.970**	.970**	.984**	.949**	.985**	.963**	.969**	.988**	.786**	.954**	.967**	.952**	.947**	.916**	.945**	.971**	.947**	.844**	.973**	.976**	.916**
Pearson	.000	.000	.000	.000		.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.001	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
Correlation	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	12	15	15	15	14	15	15	14	15	15	15
Sig. (2-tailed)																													
Ν																													
BRVT	.969**	.892**	.919**	.891**	.982**	1	.913**	.898**	.925**	.921**	.943**	.892**	.947**	.907**	.935**	.951**	.772**	.897**	.910**	.892**	.884**	.846**	.889**	.919**	.903**	.851**	.925**	.936**	.862**
Pearson	.000	.000	.000	.000	.000		.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.001	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
Correlation	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	12	15	15	15	14	15	15	14	15	15	15
Sig. (2-tailed)																													
Ν																													
DNI Pearson	.930**	.969**	.977**	.958**	.956**	.913**	1	.992**	.977**	.976**	.963**	.966**	.983**	.944**	.983**	.980**	.833**	.991**	.985**	.982**	.964**	.926**	.993**	.975**	.948**	.912**	.988**	.979**	.914**
Correlation	.000	.000	.000	.000	.000	.000		.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
Sig. (2-tailed)	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	12	15	15	15	14	15	15	14	15	15	15
Ν																													
BDG Pearson	.922**	.966**	.985**	.942**	.949**	.898**	.992**	1	.985**	.985**	.970**	.981**	.982**	.958**	.971**	.979**	.798**	.998**	.970**	.993**	.983**	.953**	.996**	.984**	.969**	.885**	.993**	.987**	.929**
Correlation	.000	.000	.000	.000	.000	.000	.000		.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
Sig. (2-tailed)	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	12	15	15	15	14	15	15	14	15	15	15
Ν																													
TNH Pearson	.942**	.972**	.993**	.903**	.970**	.925**	.977**	.985**	1	.998**	.983**	.988**	.987**	.988**	.961**	.989**	.794**	.987**	.979**	.989**	.990**	.973**	.988**	.996**	.988**	.834**	.995**	.990**	.949**
Correlation	.000	.000	.000	.000	.000	.000	.000	.000		.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
Sig. (2-tailed)	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	12	15	15	15	14	15	15	14	15	15	15
Ν																													
BPC Pearson	.940**	.965**	.996**	.911**	.970**	.921**	.976**	.985**	.998**	1	.989**	.989**	.989**	.990**	.960**	.990**	.781**	.988**	.974**	.987**	.991**	.974**	.986**	.998**	.981**	.819**	.995**	.992**	.955**
Correlation	.000	.000	.000	.000	.000	.000	.000	.000	.000		.000	.000	.000	.000	.000	.000	.001	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
Sig. (2-tailed)	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	12	15	15	15	14	15	15	14	15	15	15
Ν																													

Natural & Applied Sciences

	TGG	DTP	BTE	СТО	HCM	BRVT	DNI	BDG	TNH	BPC	BDH	KTM	QNI	ONM	DNG	TTH	QTI	QBH	HTH	NAN	HYN	HPG	HNI	BNH	РТО	VPC	TNN	YBI	TQG
BDH Pearson	.953**	.941**	.991**	.919**	.984**	.943**	.963**	.970**	.983**	.989**	1	.976**	.993**	.981**	.960**	.991**	.756**	.976**	.970**	.972**	.979**	.959**	.966**	.989**	.962**	.811**	.987**	.992**	.948**
Correlation	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	-	.000	.000	.000	.000	.000	.001	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	12	15	15	15	14	15	15	14	15	15	15
Sig. (2-tailed)																													
N																													
КТМ	.931**	.951**	.985**	.888**	.949**	.892**	.966**	.981**	.988**	.989**	.976**	1	.969**	.977**	.940**	.973**	.728**	.982**	.967**	.988**	.991**	.974**	.978**	.991**	.985**	.807**	.986**	.989**	.937**
Pearson	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000		.000	.000	.000	.000	.002	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
Correlation	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	12	15	15	15	14	15	15	14	15	15	15
Sig. (2-tailed)																													
Ν																													
ONI Pearson	.949**	.963**	.992**	.945**	.985**	.947**	.983**	.982**	.987**	.989**	.993**	.969**	1	.974**	.979**	.996**	.817**	.987**	.976**	.978**	.976**	.949**	.981**	.989**	.958**	.859**	.993**	.990**	.947**
Correlation	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000		.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
Sig (2-tailed)	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	12	15	15	15	14	15	15	14	15	15	15
N																													
IN December 1	020**	050**	00(**	057**	0(2##	007**	044**	050**	000**	000**	001**	077**	074**	1	02.4**	077**	75244	066**	050**	071**	00.4**	070**	0(2**	000**	075**	740**	070**	074**	057**
QNM Pearson	.929**	.950**	.986**	.857**	.963**	.907**	.944**	.958**	.988**	.990**	.981**	.977**	.974**	1	.934**	.977**	./53**	.966**	.959**	.971**	.984**	.979**	.963**	.990**	.975**	.749**	.979**	.974**	.957**
Sig. (2-tailed)	15	15	15	15	15	15	15	.000	15	15	15	.000	15	15	15	15	15	15	12	15	15	.000	.000	15	15	14	.000	15	15
N	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	15	10		10	10	10		10	10		10	10	10
DNG Pearson	.951**	.943**	.969**	.962**	.969**	.935**	.983**	.971**	.961**	.960**	.960**	.940**	.979**	.934**	1	.976**	.816**	.970**	.980**	.968**	.939**	.892**	.967**	.959**	.927**	.924**	.977**	.969**	.875**
Correlation	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000		.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
Sig. (2-tailed)	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	12	15	15	15	14	15	15	14	15	15	15
N																													
TTH Pearson	.952**	.964**	.993**	.936**	.988**	.951**	.980**	.979**	.989**	.990**	.991**	.973**	.996**	.977**	.976**	1	.823**	.983**	.977**	.977**	.977**	.953**	.978**	.991**	.967**	.852**	.991**	.989**	.948**
Correlation	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	15	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
N	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	12	15	15	15	14	15	15	14	15	15	15
OTI Pearson	.681**	.883**	.784**	.816**	.786**	.772**	.833**	.798**	.794**	.781**	.756**	.728**	.817**	.753**	.816**	.823**	1	.806**	.554	.780**	.770**	.752**	.807**	.787**	.750**	.765**	.795**	.754**	.819**
Correlation	.005	.000	.001	.000	.001	.001	.000	.000	.000	.001	.001	.002	.000	.001	.000	.000		.000	.062	.001	.001	.001	.000	.001	.001	.001	.000	.001	.000
Sig. (2-tailed)	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	12	15	15	15	14	15	15	14	15	15	15
Ν																													
QBH Pearson	.919**	.970**	.989**	.939**	.954**	.897**	.991**	.998**	.987**	.988**	.976**	.982**	.987**	.966**	.970**	.983**	.806**	1	.967**	.993**	.988**	.962**	.997**	.989**	.968**	.867**	.995**	.987**	.942**
Correlation	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000		.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
Sig. (2-tailed)	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	12	15	15	15	14	15	15	14	15	15	15
N Deerson	064**	020**	077**	960**	067**	010**	005**	070**	070**	074**	070**	067**	076**	050**	000**	077**	EE4	067**	1	072**	050**	011**	066**	072**	074**	017**	005**	096**	046**
Correlation	.904	.928	.977**	.009	.967	.910	.965	.970	.979	.974	.970	.967	.976	.959	.980	.977**	.554	.967	1	.972	.950	.911	.900	.972	.974	.017	.965	.960	.040
Sig. (2-tailed)	.000	12	12	12	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	12	12	.000	12	.000	.000	.000	.000	.000	12	.001	.000	.000	12
N	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12
NAN Pearson	.927**	.969**	.987**	.913**	.952**	.892**	.982**	.993**	.989**	.987**	.972**	.988**	.978**	.971**	.968**	.977**	.780**	.993**	.972**	1	.989**	.964**	.993**	.989**	.978**	.859**	.994**	.986**	.926**
Correlation	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.001	.000	.000		.000	.000	.000	.000	.000	.000	.000	.000	.000
Sig. (2-tailed)	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	12	15	15	15	14	15	15	14	15	15	15
Ν																													
HYN Pearson	.905**	.965**	.988**	.889**	.947**	.884**	.964**	.983**	.990**	.991**	.979**	.991**	.976**	.984**	.939**	.977**	.770**	.988**	.950**	.989**	1	.991**	.986**	.995**	.984**	.794**	.988**	.984**	.965**
Correlation	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.001	.000	.000	.000		.000	.000	.000	.000	.001	.000	.000	.000
sig. (2-tailed)	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	12	15	15	15	14	15	15	14	15	15	15
HPG Pearson	.860**	.948**	.969**	.835**	.916**	.846**	.926**	.953**	.973**	.974**	.959**	.974**	.949**	.979**	.892**	.953**	.752**	.962**	.911**	.964**	.991**	1	.962**	.978**	.975**	.719**	.962**	.956**	.974**
Correlation	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.001	.000	.000	.000	.000	-	.000	.000	.000	.004	.000	.000	.000
Sig. (2-tailed)	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	12	15	15	15	14	15	15	14	15	15	15
N																													

	TGG	DTP	BTE	СТО	HCM	BRVT	DNI	BDG	TNH	BPC	BDH	KTM	QNI	QNM	DNG	TTH	QTI	QBH	HTH	NAN	HYN	HPG	HNI	BNH	РТО	VPC	TNN	YBI	TQG
NHI Pearson	.904**	.982**	.984**	.927**	.945**	.889**	.993**	.996**	.988**	.986**	.966**	.978**	.981**	.963**	.967**	.978**	.807**	.997**	.966**	.993**	.986**	.962**	1	.988**	.974**	.867**	.994**	.980**	.943**
Correlation	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000		.000	.000	.000	.000	.000	.000
Sig. (2-tailed)	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	12	14	14	14	14	14	14	14	14	14	14
Ν																													
BNH Pearson	.937**	.972**	.995**	.906**	.971**	.919**	.975**	.984**	.996**	.998**	.989**	.991**	.989**	.990**	.959**	.991**	.787**	.989**	.972**	.989**	.995**	.978**	.988**	1	.983**	.816**	.995**	.992**	.961**
Correlation	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.001	.000	.000	.000	.000	.000	.000		.000	.000	.000	.000	.000
Sig. (2-tailed)	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	12	15	15	15	14	15	15	14	15	15	15
Ν																													
PTO Pearson	.923**	.955**	.971**	.855**	.947**	.903**	.948**	.969**	.988**	.981**	.962**	.985**	.958**	.975**	.927**	.967**	.750**	.968**	.974**	.978**	.984**	.975**	.974**	.983**	1	.813**	.975**	.977**	.937**
Correlation	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.001	.000	.000	.000	.000	.000	.000	.000		.000	.000	.000	.000
Sig. (2-tailed)	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	12	15	15	15	14	15	15	14	15	15	15
N																													
VPC Pearson	.852**	.840**	.828**	.932**	.844**	.851**	.912**	.885**	.834**	.819**	.811**	.807**	.859**	.749**	.924**	.852**	.765**	.867**	.817**	.859**	.794**	.719**	.867**	.816**	.813**	1	.862**	.857**	.697**
Correlation	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.002	.000	.000	.001	.000	.001	.000	.001	.004	.000	.000	.000		.000	.000	.006
Sig. (2-tailed)	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	12	14	14	14	14	14	14	14	14	14	14
N																													
TNN Pearson	.945**	.971**	.994**	.932**	.973**	.925**	.988**	.993**	.995**	.995**	.987**	.986**	.993**	.979**	.977**	.991**	.795**	.995**	.985**	.994**	.988**	.962**	.994**	.995**	.975**	.862**	1	.994**	.941**
Correlation	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000		.000	.000
Sig. (2-tailed)	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	12	15	15	15	14	15	15	14	15	15	15
N																													
YBI Pearson	.959**	.950**	.992**	.929**	.976**	.936**	.979**	.987**	.990**	.992**	.992**	.989**	.990**	.974**	.969**	.989**	.754**	.987**	.986**	.986**	.984**	.956**	.980**	.992**	.977**	.857**	.994**	1	.931**
Correlation	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.001	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000		.000
Sig. (2-tailed)	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	12	15	15	15	14	15	15	14	15	15	15
N																													
TQG Pearson	.834**	.952**	.948**	.845**	.916**	.862**	.914**	.929**	.949**	.955**	.948**	.937**	.947**	.957**	.875**	.948**	.819**	.942**	.846**	.926**	.965**	.974**	.943**	.961**	.937**	.697**	.941**	.931**	1
Correlation	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.001	.000	.000	.000	.000	.000	.000	.006	.000	.000	
Sig. (2-tailed)	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	12	15	15	15	14	15	15	14	15	15	15
N																													
** Correlation is signation	miticant at t	the () () 1 lev	eu 2-tailed	1																									

Source: study result by author

Table 6 shows Pearson correlation result of thirty-one independent variables representing thirty-one City-provinces by calculating an average value of 155 independent variables after removed 132 independent variables in Table 4 which have Corrected Item-Total Correlation < Cronbach's Alpha Based on Standardized Items in Table 2 at column 4 from the left "before items have been deleted", respectively and separately.

Statistical significance of these thirty independent variables is all = .000 < 0.05 is to mean the input data and the model was built has statistical significance. There is only Pearson Correlation of variable QTI and HTH has Statistical significance = .062 > 0.05 which seem to mean the input data and the model was built that do not reach the expected level of statistical significance

Pearson Correlation of all thirty-one independent variables are > 0. In other words, Correlation is significant at the 0.01 level (2-tailed), which is to mean that one specific variable has the positive direction correlation with other variables.

(6.3) Multinomial Logistics Regression analysis results.

TABLE 7: Models fitting information

			Model Fitting Criteria			Likelihood Ratio Tests			
		Model	AIC BIC -2 Log Likelihood		Chi-Square	df	Sig.		
No.	Cities / Provinces	Intercept Only	36.556	37.972	32.556				
1	TGG	Final	40.017	48.514	16.017	16.538	10	.085	
2	DTP	Final	47.351	55.848	23.351	9.204	10	.513	
3	BTE	Final	35.440	43.937	11.440	21.116	10	.020	
4	СТО	Final	43.306	50.387	23.306	9.250	8	.322	
5	НСМ	Final	43.155	51.652	19.155	13.401	10	.202	
6	BRVT	Final	50.233	58.730	26.233	6.322	10	.787	
7	DNI	Final	45.465	53.961	21.465	11.091	10	.350	
8	BDG	Final	41.690	48.770	21.690	10.866	8	.209	
9	TNH	Final	50.907	57.988	30.907	1.649	8	.990	
10	BPC	Final	40.874	50.787	12.874	19.682	12	.073	
11	BDH	Final	40.734	46.399	24.734	7.821	6	.251	
12	KTM	Final	44.268	52.764	20.268	12.288	10	.266	
13	QNI	Final	37.428	44.508	17.428	15.128	8	.057	
14	QNM	Final	26.834	33.914	6.834	25.722	8	.001	
15	DNG	Final	47.694	54.774	27.694	4.862	8	.772	
16	TTH	Final	45.452	53.948	21.452	11.104	10	.349	
17	QTI	Final	45.682	51.346	29.682	2.874	6	.825	
18	QBH	Final	25.172	33.669	1.172	31.383	10	.001	
19	НТН	Final	40.975	47.763	12.975	12.887	12	.377	
20	NAN	Final	50.906	59.403	26.906	5.649	10	.844	
21	HYN	Final	52.556	61.052	28.556	4.000	10	.947	
22	HPG	Final	50.874	59.370	26.874	5.682	10	.841	
23	HNI	Final	32.824	41.771	4.824	25.388	12	.013	
24	BNH	Final	44.309	51.389	24.309	8.247	8	.410	
25	BGG	Final	51.785	61.697	23.785	8.771	12	.722	
26	РТО	Final	50.449	58.945	26.449	6.107	10	.806	
27	VPC	Final	20.000	26.391	.000	30.212	8	.000	
28	TNG	Final	50.326	58.823	26.326	6.230	10	.796	
29	YBI	Final	29.093	36.174	9.093	23.462	8	.003	
30	TQG	Final	42.676	48.340	26.676	5.880	6	.437	

Source: study result by author

Table 7 gives results of model fitting of Multinomial logistics regression (MLR). The results are thirty MLR models for thirty Cities-provinces, respectively, separately. It does not include LAN province because their two independent variables LAN6 and LAN10 which have coefficients Corrected Item-Total Correlation After item deleted are -1.000 which are presented in Table 3.

Model fitting information has likelihood Ratio Chi-square tests, comparing the full model contains all the predictors (independents variables) against a null or intercept only model or no predictors. In this result, the model has statistical significance indicates that the full models represent significant improvements in fit over the null model, they are below BTE: Chi - square X2(10) = 21.116 and sig = .020

QNM: Chi - square X2(8) = 25.722 and sig = .001

QBH: Chi - square X2(10) = 31.383 and sig = .001

HNI: Chi - square X2(12) = 25.388 and sig = .013

VPC: Chi - square X2(8) = 30.212 and sig = .000

YBI: Chi - square X2(8) = 23.462 and sig = .003

No	Cities / Provinces		Chi-Square	df	Sig.	No	Cities / Provinces		Chi-Square	df	Sig.
1	тсс	Pearson	12.953	18	.794	16	ттц	Pearson	30.472	18	.033
1	100	Deviance	16.017	18	.591	10	1 1 1 1	Deviance	21.452	18	.257
2	סידת	Pearson	25.959	18	.101	17	OTI	Pearson	28.958	22	.146
2	DIF	Deviance	23.351	18	.177	17	QII	Deviance	29.682	22	.126
2	BLE	Pearson	8.786	18	.965	10	OBH	Pearson	.609	18	1.000
5	DIE	Deviance	11.440	18	.875	10	QDII	Deviance	1.172	18	1.000
4	CTO	Pearson	28.395	20	.100	10	ити	Pearson	10.113	10	.431
4	CIU	Deviance	23.306	20	.274	19	піп	Deviance	12.975	10	.225
E	нсм	Pearson	24.466	18	.140	20	NAN	Pearson	28.682	18	.052
5	IICM	Deviance	19.155	18	.382	20	INAIN	Deviance	26.906	18	.081
6	DDVT	Pearson	26.198	18	.095	21	UVN	Pearson	31.293	18	.027
0	DKVI	Deviance	26.233	18	.095	21		Deviance	28.556	18	.054
7	DNI	Pearson	24.245	18	.147	22 HPG	НРС	Pearson	26.044	18	.099
	DINI	Deviance	21.465	18	.257		Deviance	26.874	18	.081	
0	0 000	Pearson	22.647	20	.306	23	23 HNI	Pearson	3.323	14	.998
0	BDG	Deviance	21.690	20	.358	23		Deviance	4.824	14	.988
0	TNU	Pearson	29.053	20	.087	24	BNH	Pearson	23.912	20	.246
9	1 1111	Deviance	30.907	20	.056	24	DNII	Deviance	24.309	20	.229
10	PDC	Pearson	8.998	16	.913	25	DCC	Pearson	21.700	16	.153
10	DFC	Deviance	12.874	16	.682	23	DGG	Deviance	23.785	16	.094
11	חטמ	Pearson	24.852	22	.304	26	DTO	Pearson	24.935	18	.127
11	BDII	Deviance	24.734	22	.310	20	FIU	Deviance	26.449	18	.090
12	ИТМ	Pearson	24.906	18	.128	27	VDC	Pearson	.000	18	1.000
12	KIM	Deviance	20.268	18	.318	27	VPC	Deviance	.000	18	1.000
12	ONI	Pearson	18.652	20	.545	20	TNC	Pearson	29.341	18	.044
15	QIVI	Deviance	17.428	20	.625	20	ING	Deviance	26.326	18	.093
14	ONM	Pearson	6.057	20	.999	20	VDI	Pearson	7.177	20	.996
14	QINIM	Deviance	6.834	20	.997	29	IDI	Deviance	9.093	20	.982
15	DNC	Pearson	28.276	20	.103	20	TOC	Pearson	25.664	22	.266
15 DNG	DNG	Deviance	27.694	20	.117	50	IQG	Deviance	26.676	22	.224

TABLE 8: Goodness of Fit

Source: study result by author

Table 8 gives information of Goodness of Fit which contains the Deviance and Pearson chi-square tests that are useful for determining whether models show good fit to the data.

Pearson's chi-square test indicates that the models fit the data well consists of all twenty-seven models includes TGG has Chi - square X2(18) = 12.953 and sig = .794, DTP has Chi - square X2(18) = 25.959 and sig = .101, KTM has Chi - square X2(18) = 24.906 and sig = .128 ... and TQG has Chi - square X2(22) = 25.664 and sig = .266.

Pearson's chi-square test indicates that the models do not fit the data well consists of three models includes TTH has Chi - square X2(18) = 30.472 and sig = .033, HYN has Chi - square X2(18) = 31.293 and sig = .027 and TNG has Chi - square X2(18) = 29.341 and sig = .044

No	Cities /			No	Cities /			No	Cities /																	
NO.	Provinces			NO.	Provinces			NO.	Provinces																	
		Cox and Snell	668			Cox and	406			Cox and	234															
1	тес	cox and shen	.000	11	врн	Snell	.100	21	HVN	Snell	.234															
1	Iuu	Nagelkerke	.754	11	DDII	Nagelkerke	.459	21	11110	Nagelkerke	.264															
		McFadden	.508			McFadden	.240			McFadden	.123															
		Cox and Snell	459			Cox and	559			Cox and	315															
2	DTP	cox and bhen	.107	12	ктм	Snell	.007	22	HPG	Snell	.515															
-	DII	Nagelkerke	.518			Nagelkerke	.631		in d	Nagelkerke	.356															
		McFadden	.283			McFadden	.377			McFadden	.175															
		Cox and Snell	.755			Cox and	.635			Cox and	.837															
3	BTE			13	ONI	Snell		23	HNI	Snell																
-		Nagelkerke	.853		C	Nagelkerke	.717			Nagelkerke	.946															
		McFadden	.649			McFadden	.465			McFadden	.840															
		Cox and Snell	.460			Cox and	.820			Cox and	.423															
4	СТО			14	QNM	Snell		24	BNH	Snell																
		Nagelkerke	.520			Nagelkerke	.926			Nagelkerke	.477															
		McFadden	.284			McFadden	.790			McFadden	.253															
		Cox and Snell	.591		DNG	Cox and	.277	25		Cox and	.443															
5	НСМ			15		Snell			BGG	Snell																
		Nagelkerke	.667			Nagelkerke	.313			Nagelkerke	.500															
		McFadden	.412			McFadden	.149			McFadden	.269															
		Cox and Snell	.344		TTH	Cox and	.523	26		Cox and	.334															
6	BRVT		200	16		Snell	500		РТО	Snell	0.70															
		Nagelkerke	.388			Nagelkerke	.590			Nagelkerke	.378															
		McFadden	.194			McFadden	.341			McFadden	.188															
		Cox and Snell	.523			Cox and	.174			Cox and	.884															
7	DNI		500	17	QTI	Snell	107	27	VPC	Snell	1.000															
		Nagelkerke	.590		_	Nagelkerke	.197			Nagelkerke	1.000															
		McFadden	.341			McFadden	.088			McFadden	1.000															
		Cox and Snell	.515			Cox and	.877			Cox and	.340															
8	BDG	Nagallaaria	502	18	QBH	Shell	000	28	TNC	Shell	204															
		MaEaddan	.582			Nageikerke	.990		ING	Nageikerke	.384															
		McFadden	.334			Courand	.964			McFadden	.191															
		Cox and Snell	.104			Cox and	.658			Cox and	.791															
9	TNH	Nagallaarka	117	19	UTU	Sileii	745	29	YBI	Sileii	002															
		MaEaddan	.11/		нін	Nageikerke	./45			Nageikerke	.893															
		McFadden	.051			Coward	.498			McFadden	./21															
		Cox and Snell	.731			Spall	.314			Cox and	.324															
10	BPC	Nagalkarka	02E	20	NAN	Nagolkorko	251	30	TOC	Nagolkorko	266															
		McEaddon	.025 605		INAIN	McEaddor	.354		TQG	McEaddon	.300															
		Mcradden	.005			McFadden	.1/4			McFadden	.101															

TABLE 9: Pseudo R - Square

Source: study result by author

Table 9 shows results of Pseudo-R-square values which are treated as rough analogues to the R-square value in OLS regression. According to (Lomax & Hahs-Vaugn, 2012; Osborne, 2015; Pituch & Stevens, 2016; Smith & Mckenna, 2013) that generally there is no strong guidance in the literature on how these should be used or interpreted.

TABLE 10: Likelihood Ratio Tests

			Model Fitting Criteria			Likelihood Ratio Tests			
No.	Cities / Provinces	Effect Variable	AIC of Reduced Model	BIC of Reduced Model	-2 Log Likelihood of Reduced Model	Chi-Square	df	Sig.	
1	TGG	TGG8	46.226	53.306	26.226b	10.208	2	.006	
2	DTP	DTP ₉	48.935	56.016	28.935	5.584	2	.061	
3	BTE	BTE1	41.327	48.407	21.327	9.887	2	.007	
4	BTE	BTE ₇	45.073	52.154	25.073	13.633	2	.001	
5	BTE	BTE ₈	48.832	55.913	28.832	17.392	2	.000	
6	СТО	CTO1	46.437	52.101	30.437	7.131	2	.028	
7	НСМ	HCM1	45.718	52.798	25.718	6.563	2	.038	
8	НСМ	HCM ₂	46.945	54.025	26.945	7.790	2	.020	
9	НСМ	HCM ₇	46.582	53.663	26.582	7.427	2	.024	
10	НСМ	HCM ₁₀	47.455	54.535	27.455	8.300	2	.016	
11	BDG	BDG ₂	44.609	50.273	28.609	6.919	2	.031	
12	BDG	BDG ₁	48.090	56.586	24.090a	11.216	2	.004	
13	BDG	BDG10	46.205	54.701	22.205a	9.331	2	.009	
14	KTM	BDG ₈	48.882	55.963	28.882	8.615	2	.013	
15	QNI	QNI ₈	43.533	49.198	27.533	10.106	2	.006	
16	QNM	QNM ₂	38.740	44.404	22.740	15.906	2	.000	
17	QNM	QNM ₈	39.557	45.221	23.557	16.723	2	.000	
18	QBH	QBH ₇	30.234	37.315	10.234a	9.062	2	.011	
19	QBH	QBH ₈	36.486	43.567	16.486	15.314	2	.000	
20	QBH	QBH10	27.891	34.971	7.891a	6.718	2	.035	
21	HTH	HTH_1	43.192	49.010	19.192	6.217	2	.045	
22	HTH	HTH ₈	43.098	48.917	19.098	6.124	2	.047	
23	HNI	HNI1	34.592	42.261	10.592	5.769	2	.056	
24	HNI	HNI8	42.534	50.203	18.534	13.711	2	.001	
25	VPC	VPC1	42.613	47.726	26.613	26.613	2	.000	
26	VPC	VPC ₂	42.437	47.550	26.437	26.437	2	.000	
27	VPC	VPC ₃	32.822	37.934	16.822	16.822	2	.000	
28	VPC	VPC ₈	40.392	45.504	24.392	24.392	2	.000	
29	YBI	YBI2	37.136	42.800	21.136	12.043	2	.002	
30	YBI	YBI8	36.079	41.743	20.079	10.986	2	.004	

Source: study result by author

Table 10 is presenting results which contain Likelihood Ratio Tests of the overall contribution of each independent variable to the model. There are fifteen independent variables have significant predictors in the models, they are

BTE1 has Chi - square X2(2) = 9.887 and sig = .007 BTE7 has Chi - square X2(2) = 13.633 and sig = .001 BTE8 has Chi - square X2(2) = 17.392 and sig = .000 QNM2 Has Chi - square X2(2) = 15.906 and sig = .000 QNM8 has Chi - square X2(2) = 16.723 and sig = .000 QBH7 has Chi - square X2(2) = 9.062 and sig = .011 QBH8 has Chi - square X2(2) = 15.314 and sig = .000 QBH10 has Chi - square X2(2) = 6.718 and sig = .035 HNI8 has Chi - square X2(2) = 13.711 and sig = .001 VPC1 has Chi - square X2(2) = 26.613 and sig = .000 VPC2 has Chi - square X2(2) = 26.437 and sig = .000 VPC3 has Chi - square X2(2) = 16.822 and sig = .000

VPC8 has Chi - square X2(2) = 24.392 and sig = .000 YBI2 has Chi - square X2(2) = 12.043 and sig = .002

YBI8 has Chi - square X2(2) = 10.986 and sig = .004

And one independent variable has near significant predictors in the model is HNI1 has Chi - square X2(2) = 5.769 and sig = .056

									95% Confidence Interval		
Cities /	Traffic_		В	Std. Error	Wald	df	Sig.	Exp(B)	for E	Exp(B)	
Provinces	Impact								Lower	Upper	
	-								Bound	Bound	
	1	Intercept	-14639.319	4038.167	13.142	1	.000				
	1	BTE1	378	.520	.528	1	.468	.685	.247	1.900	
	1	BTE ₇	6.842	1.891	13.084	1	.000	935.946	22.977	38125.142	
	1	BTE ₈	29.819	20.964	2.023	1	.155	8.913E+12	1.275E-5	6.231E+30	
BTE	2	Intercept	-14516.900	2196.194	43.692	1	.000				
	2	BTE ₁	377	.519	.530	1	.467	.686	.248	1.894	
	2	BTE ₇	6.784	.000		1		883.418	883.418	883.418	
	2	BTE ₈	29.792	19.628	2.304	1	.129	8.683E+12	.000	4.428E+29	
	1	Intercept	9460.171	1995.973	22.464	1	.000				
	1	QNM ₂	391	.219	3.197	1	.074	.676	.441	1.038	
ONIM	1	QNM ₈	2.545	1.267	4.036	1	.045	12.744	1.064	152.608	
QINM	2	Intercept	11416.561	1408.536	65.695	1	.000				
	2	QNM ₂	311	.225	1.909	1	.167	.733	.472	1.139	
	2	QNM ₈	2.760	1.236	4.985	1	.026	15.796	1.401	178.096	
	1	Intercept	-692.851	3924.264	.031	1	.860				
	1	QBH ₇	079	5.994	.000	1	.990	.924	7.312E-6	116818.269	
	1	QBH_8	2.052	1.981	1.073	1	.300	7.784	.160	377.871	
OBH	1	QBH10	6.464	25.592	.064	1	.801	641.443	1.055E-19	3.899E+24	
QDII	2	Intercept	-5023.524	6603.032	.579	1	.447				
	2	QBH7	8.677	8.258	1.104	1	.293	5866.289	.001	6.269E+10	
	2	QBH ₈	.747	1.071	.486	1	.486	2.110	.259	17.215	
	2	QBH10	-20.165	.000		1		1.748E-9	1.748E-9	1.748E-9	
	1	Intercept	-9942.440	55942.698	.032	1	.859				
	1	HNI_1	142	.664	.046	1	.831	.868	.236	3.187	
HNI	1	HNI ₈	.532	2.021	.069	1	.792	1.702	.032	89.377	
	2	Intercept	-5694.094	1563.047	13.271	1	.000				
	2	HNI_1	145	.101	2.041	1	.153	.865	.710	1.055	
	2	HNI8	.495	.504	.963	1	.327	1.640	.611	4.404	
	1	Intercept	-8120.585	304250.51 8	.001	1	.979				
	1	VPC ₁	3.285	123.959	.001	1	.979	26.701	8.175E-105	8.721E+106	
	1	VPC ₂	-10.169	381.253	.001	1	.979	3.835E-5	.000	.b	
	1	VPC ₃	1589.668	58103.798	.001	1	.978	.b	.000	.b	
VPC	1	VPC ₈	38.368	1446.727	.001	1	.979	4.602E+16	.000	.b	
VIC	2	Intercept	-9408.761	338340.55 8	.001	1	.978				
	2	VPC ₁	3.966	141.800	.001	1	.978	52.768	1.051E-119	2.648E+122	
	2	VPC ₂	-10.696	393.576	.001	1	.978	2.264E-5	.000	.b	
	2	VPC ₃	983.360	41914.959	.001	1	.981	.b	.000	.b	
	2	VPC ₈	43.713	1591.907	.001	1	.978	9.644E+18	.000	.b	
	1	Intercept	-3604.821	5904.662	.373	1	.542				
	1	YBI2	-3.574	18.822	.036	1	.849	.028	2.670E-18	2.945E+14	
VRI	1	YBI8	12.017	1.456	68.165	1	.000	165568.300	9550.601	2870275.975	
101	2	Intercept	-3609.679	5894.462	.375	1	.540				
	2	YBI2	-3.459	18.823	.034	1	.854	.031	2.988E-18	3.309E+14	
	2	YBI8	10.901	.000		1		54249.110	54249.110	54249.110	

TABLE 11:	Parameter	Estimates
------------------	-----------	-----------

Source: study result by author

From the result of Likelihood Ratio Tests presented in Table 10, that there are six City-provinces have independent variables that have significant predictors in the models. Six City-province include fifteen independent variables are described clearly in Table 10 and here Table 11 shows these six City-Provinces' Parameter Estimates consists of BTE, QNM, QBH, HNI, VPC, YBI.

Parameter estimates provides information that compares each independent variable group against 0 (0 represents independent variables have no impact on Traffic congestion). Especially, the regression coefficients indicate which predictors significantly discriminate between 0 and 1 (1 represents independent variables have slight impact on Traffic congestion). Between 0 and 2 (2 represents independent variables have heavy impact on Traffic congestion).

BTE7: coefficients compare between 0 and 1 are B = 6.842, Std. Error = 1.891, Sig. = .000 to show that BTE7 is less likely to 0. The probability ratio of Exp(B) = 935.946 is to indicate that for every unit increase on BTE7, the probability of BTE7 impact on traffic congestion is changed by a factor of 935.946 or it can be said the probability of BTE7 impact on traffic congestion is increased by 935.946.

QNM8: coefficients compare between 0 and 1 are B = 2.545, Std. Error = 1.267, Sig. = .045 to show that QNM8 is less likely to 0. The probability ratio of Exp(B) = 12.744 is to indicate that for every unit increase on QNM8, the probability of QNM8 impact on traffic congestion is changed by a factor of 12.744 or it can be said the probability of QNM8 impact on traffic congestion is increased by 12.744.

QNM8: coefficients compare between 0 and 2 are B = 2.760, Std. Error = 1.236, Sig. = .026 to show that QNM8 is less likely to 0. The probability ratio of Exp(B) = 15.796 is to indicate that for every unit increase on QNM8, the probability of QNM8 impact on traffic congestion is changed by a factor of 15.796 or it can be said the probability of QNM8 impact on traffic congestion is increased by 15.796.

YBI8: coefficients compare between 0 and 1 are B = 12.017, Std. Error = 1.456, Sig. = .000 to show that QNM8 is less likely to 0. The probability ratio of Exp(B) = 165568.300 is to indicate that for every unit increase on QNM8, the probability of YBI8 impact on traffic congestion is changed by a factor of 165568.300 or it can be said the probability of YBI8 impact on traffic congestion is increased by 165568.300.

Citios / Provinces	Obcomvod		Predicted	Porcont Corroct	
cities / Flovinces	Observeu	0	1	2	reitenttönrett
	0	6	0	0	100.0%
	1	0	2	2	50.0%
BTE	2	0	0 2		60.0%
	Overall Percentage	40.0%	26.7%	33.3%	73.3%
	0	6	0	0	100.0%
	1	0	3	1	75.0%
QNM	2	0	1	4	80.0%
	Overall Percentage	40.0%	26.7%	33.3%	86.7%
	0	6	0	0	100.0%
	1	0	4	0	100.0%
QBH	2	0	0	5	100.0%
	Overall Percentage	40.0%	26.7%	33.3%	100.0%

TABLE 12: Classification

Citios / Provinces	Obcorryod		Porcont Corroct			
cities / Flovinces	Observeu	0	1	2	reitenttorrett	
	0	5	0	1	83.3%	
	1	0	4	0	100.0%	
HNI	2	0	0	4	100.0%	
	Overall Percentage	35.7%	28.6%	35.7%	92.9%	
	0	6	0	0	100.0%	
	1	0	4	0	100.0%	
VPC	2	0	0	4	100.0%	
	Overall Percentage	42.9%	28.6%	28.6%	100.0%	
	0	6	0	0	100.0%	
	1	0	2	2	50.0%	
YBI	2	0	2	3	60.0%	
	Overall Percentage	40.0%	26.7%	33.3%	73.3%	

Source: study result by author

Table 12 shows classification statistics which is to determine which hypothesizes dependent variables are best predicted by the model.

0 is mean not to impact on traffic congestion. 1 is mean to slight impact on traffic congestion. 2 is mean to heavily impact on traffic congestion

BTE has 0 is correctly predicted by the model is 100%, 1 is correctly predicted by the model is 50% and 2 is correctly predicted by the model is 60%.

QNM has 0 is correctly predicted by the model is 100%, 1 is correctly predicted by the model is 75% and 2 is correctly predicted by the model is 80%.

QBH has 0 is correctly predicted by the model is 100%, 1 is correctly predicted by the model is 100% and 2 is correctly predicted by the model is 100%.

HNI has 0 is correctly predicted by the model is 83.3%, 1 is correctly predicted by the model is 100%, and 2 is correctly predicted by the model is 100%.

VPC has 0 is correctly predicted by the model is 100%, 1 is correctly predicted by the model is 100% and 2 is correctly predicted by the model is 100%.

YBI has 0 is correctly predicted by the model is 100%, 1 is correctly predicted by the model is 50% and 2 is correctly predicted by the model is 60%.

(7) **DISCUSSION**

Based on results in section 6 that all coefficients of Cronbach's Alpha Before and After deleted items are in [0,1] is to mean qualified (Lee J. Cronbach, 1951), except "LAN = -12.955" that is deleted before doing analysis of Pearson Correlation. Coefficients of Corrected Item-Total Correlation Before items deleted are between .356 and .993, they are in [8,9]. Coefficients of Corrected Item-Total Correlation After items deleted are between .381 and .996, they are almost in [8,9], there are only LAN6 and LAN10 = -1.000 and QNI3 = -.253. All Coefficients of Corrected Item-Total Correlation Before and After items deleted are between .381 and .996, they are almost in [8,9], there are only LAN6 and LAN10 = -1.000 and QNI3 = -.253. All Coefficients of Corrected Item-Total Correlation Before and After items deleted are > Coefficients Cronbach's Alpha Based on Standardized Items. Based on Nunnally, J. (1978) that variables have Corrected item -Total Correlation >= 0.3 is to mean they are qualified. 132 independents variables that have Coefficients of Corrected Item-Total Correlation < Cronbach's Alpha Based on Standardized Items have been deleted which are shown in Table 4.

Table 5 shows Pearson correlation result of four representatives city-provinces are BTE, QBH, VPC and YBI which Statistical significance of QBH, VPH and YBI are all < 0.05 which is to mean the input data and the model was built has statistical significance, except BTE8 and BTE3 = .346, and BTE8 and BTE9 = .164 > 0.05. Pearson correlation result of 155 independent variables shows in Table 6 are all statistical significance = .000 < 0.05 is to mean the input data and the model was built has statistical significance. There is Pearson Correlation of QTI and HTH has Statistical significance = .062 > 0.05 which seem to indicate the input data and the model was built that do not reach the expected level of statistical significance. Pearson Correlation of all thirty-one independent variables are > 0 that can say correlation is significant at the 0.01 level (2-tailed), mean that one specific variable has the positive direction correlation with other variables.

Multinomial Logistics Regression analysis results is illustrated in Table 7 giving results of model fitting of thirty MLR models for thirty Cities-provinces, respectively, separately. Model fitting information has likelihood Ratio Chi-square tests, the model has statistical significance indicates that the full models represent significant improvements in fit over the null model, they are BTE has X2(10) = 21.116 and sig = .020, QNM has X2(8) = 25.722 and sig = .001, QBH has X2(10)= 31.383 and sig = .001, HNI has X2(12) = 25.388 and sig = .013, VPC has X2(8) = 30.212 and sig = .000, YBI has X2(8) =23.462 and sig = .003. Goodness of Fit is presented in Table 8 to determine that the models fit the data well consists of all twenty-seven models includes TGG has X2(18) = 12.953 and sig = .794, DTP has X2(18) = 25.959 and sig = .101, KTM has X2(18) = 24.906 and sig = .128 ... and TQG has X2(22) = 25.664 and sig = .266. However, the models do not fit the data well consists of three models includes TTH has X2(18) = 30.472 and sig = .033, HYN has X2(18) = 31.293 and sig = .027 and TNG has X2(18) = 29.341 and sig = .044. Likelihood Ratio Tests is shown in Table 10 of overall contribution of each independent variable to the model. There are fifteen independent variables have significant predictors in the models, they are BTE1 has X2(2) = 9.887 and sig = .007, BTE7 has X2(2) = 13.633 and sig = .001, BTE8 has X2(2) = 12.63317.392 and sig = .000, QNM2 has X2(2) = 15.906 and sig = .000, QNM8 has X2(2) = 16.723 and sig = .000, QBH7 has X2(2) = 9.062 and sig = .011, QBH8 has X2(2) = 15.314 and sig = .000, QBH10 has X2(2) = 6.718 and sig = .035, HNI8 has X2(2) = 13.711 and sig = .001, VPC1 has X2(2) = 26.613 and sig = .000, VPC2 has X2(2) = 26.437 and sig = .000, VPC3 has X2(2) = 16.822 and sig = .000, VPC8 has X2(2) = 24.392 and sig = .000, VBI2 has X2(2) = 12.043 and sig = .002, YBI8 has X2(2) = 10.986 and sig = .004, and one independent variable has near significant predictors in the model is HNI1 has Chi - square X2(2) = 5.769 and sig = .056.

Parameter Estimates is described in Table 11 providing information which compares each independent variable group against 0 (0 represents independent variables have no impact on Traffic congestion). The regression coefficients indicate which predictors significantly discriminate between 0 and 1 (1 represents independent variables have slight impact on Traffic congestion). Between 0 and 2 (2 represents independent variables have heavy impact on Traffic congestion); BTE7 has coefficients compare between 0 and 1 are B = 6.842, Std. Error = 1.891, Sig. = .000 to show that BTE7 is less likely to 0. The probability ratio of Exp(B) = 935.946 is to indicate that for every unit increase on BTE7, the probability of BTE7 impact on traffic congestion is changed by a factor of 935.946 increasingly. QNM8 has coefficients compare between 0 and 1 are B = 2.545, Std. Error = 1.267, Sig. = .045 to show that QNM8 is less likely to 0. The probability ratio of Exp(B) = 12.744 is to indicate that for every unit increase on QNM8, the probability of QNM8 impact on traffic congestion is changed by a factor of 12.744 increasingly. QNM8 has coefficients compare between 0 and 2 are B = 2.760, Std. Error = 1.236, Sig. = .026 to show that ONM8 is less likely to 0. The probability ratio of Exp(B) = 15.796 is to indicate that for every unit increase on QNM8, the probability of QNM8 impact on traffic congestion is changed by a factor of 15.796 increasingly. YBI8 has coefficients compare between 0 and 1 are B = 12.017, Std. Error = 1.456, Sig. = .000 to show that QNM8 is less likely to 0. The probability ratio of Exp(B) = 165568.300 is to indicate that for every unit increase on QNM8, the probability of YBI8 impact on traffic congestion is changed by a factor of 165568.300 increasingly.

Classification statistics is shown in Table 12 is to determine which hypothesizes dependent variables are best predicted by the model. BTE has 0 is correctly predicted by the model is 100%, 1 is correctly predicted by the model is 50% and 2 is correctly predicted by the model is 60%. QNM has is correctly predicted by the model is 100%, 1 is correctly predicted by the model is 75% and 2 is correctly predicted by the model is 80%. QBH has 0, 1 and 2 are all correctly predicted by the model is 100%. HNI has 0 is correctly predicted by the model is 83.3%, 1 and 2 are correctly predicted by the model is 100%. VPC has 0, 1 and 2 are all correctly predicted by the model is 100%. YBI has 0 is correctly predicted by the model is 100%. YBI has 0 is correctly predicted by the model is 50% and 2 is correctly predicted by the model is 100%. YBI has 0 is correctly predicted by the model is 50% and 2 is correctly predicted by the model is 50% and 2 is correctly predicted by the model is 100%. YBI has 0 is correctly predicted by the model is 50% and 2 is correctly predicted by the model is 100%. Some correctly predicted by the model is 100%. YBI has 0 is correctly predicted by the model is 100%. YBI has 0 is correctly predicted by the model is 50% and 2 is correctly predicted by the model is 60

(8) CONCLUSION

Based on results in section 6 and discussion in section 7, we have conclusion is Cronbach's Alpha Before and After deleted items of thirty City-provinces except "LAN = -12.955" are in [0,1] are quite qualified (Lee J. Cronbach, 1951). Coefficients of Corrected Item-Total Correlation After items deleted are between .381 and .996, they are almost in [8,9] which all is >= 0.3 is to mean they are qualified (Nunnally, J., 1978), there is only LAN6 and LAN10 = -1.000 and QNI3 = -.253. Pearson correlation result of 155 independent variables have statistical significance = .000 < 0.05 is to mean the input data and the model was built has statistical significance. Pearson Correlation of all thirty-one independent variables are > 0 that can say correlation is significant at the 0.01 level (2-tailed), that is one specific variable has the positive direction correlation with other variables. Model fitting information of thirty MLR models for thirty Cities-provinces has likelihood Ratio Chi-square tests, the model has statistical significance indicates that the full models represent significant improvements in fit over the null model, they are BTE, QNM, QBH, HNI, VPC, YBI. Goodness of Fit is to determine the models fit the data well consists of all twenty-seven models includes TGG, DTP, KTM...TQG. However, the models do not fit the data well consists of three models includes TTH, HYN,TNG. Likelihood Ratio Tests is to define that there are fifteen independent variables have significant predictors in the models, they are BTE1, BTE7, BTE8, QNM2, QNM8, QBH7, QBH8, QBH10, HNI8, VPC1, VPC2, VPC3, VPC8, YBI2, YBI8 and one independent variable has near significant predictors in the model is HNI1.

Parameter Estimates to determinate that BTE7 (Population of Ben Tre province) has B = 6.842, Std. Error = 1.891, Sig. = .000 to show that Population of Ben Tre province is likely to slightly impact on traffic congestion. The probability ratio of Exp(B) = 935.946 is to indicate that for every unit increase on Population of Ben Tre province, the probability of Population of Ben Tre province slightly impacts on traffic congestion is changed by a factor of 935.946 increasingly. QNM8 (Urban residents of Quang Nam province) has B = 2.545, Std. Error = 1.267, Sig. = .045 to show that Urban residents of Quang Nam province is likely to slight impact on traffic congestion. The probability ratio of Exp(B) = 12.744is to indicate that for every unit increase on Urban residents of Quang Nam province, the probability of Urban residents of Quang Nam province slightly impacts on traffic congestion is changed by a factor of 12.744 increasingly. QNM8 (Urban residents of Quang Nam province) has B = 2.760, Std. Error = 1.236, Sig. = .026 to show that QNM8 is likely to heavily impact on traffic congestion. The probability ratio of Exp(B) = 15.796 is to indicate that for every unit increase on Urban residents of Quang Nam province, the probability of Urban residents of Quang Nam province heavily impacts on traffic congestion is changed by a factor of 15.796 increasingly. YBI8 (Urban residents of Yen Bai province) has B = 12.017, Std. Error = 1.456, Sig. = .000 to show that Urban residents of Yen Bai province is likely to slightly impact on traffic congestion. The probability ratio of Exp(B) = 165568.300 is to indicate that for every unit increase on Urban residents of Yen Bai province, the probability of Urban residents of Yen Bai province slightly impact on traffic congestion is changed by a factor of 165568.300 or it can be said the probability of Urban residents of Yen Bai province slightly impact on traffic congestion is increased by 165568.300.

The classification statistics is to determine which hypothesizes dependent variables are best predicted by the model which are hypothesizes dependent variables for no impact on traffic congestion is of BTE, QNM, QBH, VPC, HNI are all 100% and HNI is 83.3%. Hypothesizes dependent variables for slight impact on traffic congestion are BTE = 50%, QNM = 75%, QBH and VPC and HNI = 100%, YBI is 50%. Hypothesizes dependent variables for heavy impact on traffic congestion are BTE = 60%, QNM = 80%, QBH and VPC = 100%, HNI = 92,2%, and YBI = 73.3%.

Limitations

Firstly, it could not have analysis of Exploratory Factor Analysis, maybe the time series data is short that just in 2005 and from 2007 to 2020

Secondly, based on these study results, there are only four independent variables of three provinces in total thirty-one City-provinces have impact on traffic congestion, author thinks that this is not very good results. Author does hope the next study which author will use a new methodology to study such similar object in order to find out the better study results.

(9) DECLARATION OF COMPETING INTEREST

I declare that I have no significant competing interests including financial or non-financial, professional, or personal interests interfering with the full and objective presentation of the work described in this manuscript. I have described my financial or non-financial interests in the space below

(10) ACKNOWLEDGEMENT

This study was financially supported by Van Lang University, Vietnam.

(11) FUNDING

The author receives no financial support for the research, authorship, and/or publication of this article.

(12) AUTHOR CONTRIBUTIONS

There is only author Vu Thi Kim Hanh who has done the whole this article

(13) DATA AVAILABILITY STATEMENT

The data is time series data which has been collected and extracted by manual method by the author Vu Thi Kim Hanh, data is in 2005 and from 2007 to 2020 is from General statistics department of Vietnam.

REFERENCE

- [1] Attila M. Nagy, Vilmos Simon, "Improving traffic prediction using congestion propagation patterns in smart cities", Advanced Engineering Informatics 50 (2021) 101343.
- [2] Muneera C P, Krishnamurthy K, "Economic Evaluation of Traffic Congestion at Intersection: Case study from an Indian City", Transportation Research Procedia 48 (2020) 1766–1777.
- [3] I.O. Olayode, L.K Tartibu, M.O Okwu et al., "Intelligent transportation systems, un -signalized road intersections and traffic congestion in Johannesburg: a systematic review", Procedia CIRP 91 (2020) 844–850.
- [4] Md. Asaduzzaman Noor, Sultana Ashrafi, Md. Abdul Fattah et al., "Assessment of traffic congestion scenario at the CBD areas in a developing city: In the context of Khulna City, Bangladesh", Transportation Research Interdisciplinary Perspectives 11 (2021) 100435.
- [5] Mingshu Wang, Neil Debbage, "Urban morphology and traffic congestion: Longitudinal evidence from US cities", Computers, Environment and Urban Systems 89 (2021) 101676.
- [6] Nyothiri Aung, Weidong Zhang, Kashif Sultan et al., "Dynamic traffic congestion pricing and electric vehicle charging management system for the internet of vehicles in smart cities", Digital Communications and Networks xxx (xxxx) xxx, https://doi.org/10.1016/j.dcan.2021.01.002.
- [7] Negin Alisoltani, Ludovic Leclercq, Mahdi Zargayouna, "Can dynamic ride-sharing reduce traffic congestion?", Transportation Research Part B 145 (2021) 212–246.
- [8] Shridevi Jeevan Kamble, Manjunath R Kounte, "Machine Learning Approach on Traffic Congestion Monitoring System in Internet of Vehicles", Procedia Computer Science 171 (2020) 2235–2241.
- [9] Susanne Grüner, Mark Vollrath, "Challenges for obtaining a system-optimal traffic distribution by giving route advice due to the biased memory of congestion", Transportation Research Procedia 52 (2021) 396–403.
- [10] Qingyuan Ji, Junchen Jin, "Reasoning Traffic Pattern Knowledge Graph in Predicting Real-Time Traffic Congestion Propagation", IFAC PapersOnLine 53-5 (2020) 578–581.
- [11] Frances Agyapong, Thomas Kolawole Ojo, "Managing traffic congestion in the Accra Central Market, Ghana", Journal of Urban Management 7 (2018) 85–96.
- [12] Irene Overtoom, Gonçalo Correia, Yilin Huang et al., "Assessing the impacts of shared autonomous vehicles on congestion and curb use: A traffic simulation study in The Hague, Netherlands", International Journal of Transportation Science and Technology 9 (2020) 195–206.
- [13] John F. Zaki, Amr Ali-Eldin, Sherif E. Hussein et al., "Traffic congestion prediction based on Hidden Markov Models and contrast measure", Ain Shams Engineering Journal 11 (2020) 535–551.
- [14] Pedro Cesar Lopes Gerum, Andrew Reed Benton, Melike Baykal-Gürsoy, "Traffic density on corridors subject to incidents: models for long-term congestion management", EURO J Transp Logist (2019) 8:795–831.
- [15] Tariku Sinshaw Tamir, Gang Xiong, Senior Member et al., "Traffic Congestion Prediction using Decision Tree, Logistic Regression and Neural Networks", IFAC PapersOnLine 53-5 (2020) 512–517.

- [16] Muhammad Taufiq Zulfikar, Suharjito, "Detection Traffic Congestion Based on Twitter Data using Machine Learning", Procedia Computer Science 157 (2019) 118–124.
- [17] Bartosz Bursa, Nemanja Gajic, Markus Mailer, "Insights into the congestion patterns on alpine motorways based on separate traffic lane analysis", Transportation Research Procedia 37 (2019) 441–448.
- [18] Athanasios I. Koukounaris, Konstantin P. Marousi a and Yorgos J. Stephanedes, P.E., "Congestion detection and diversion in coastal urban traffic", Transportation Research Procedia 41 (2019) 255–259.
- [19] Badreddine Cherkaoui, Abderrahim Beni-Hssane, Mohamed El Fissaoui et all., "Road traffic congestion detection in VANET networks", Procedia Computer Science 151 (2019) 1158–1163.
- [20] https://vi.wikipedia.org/wiki/%C4%90%E1%BB%93ng_b%E1%BA%B1ng_s%C3%B4ng_C%E1%BB%ADu_Long
- [21] https://vi.wikipedia.org/wiki/%C4%90%C3%B4ng_Nam_B%E1%BB%99
- [22] https://vi.wikipedia.org/wiki/Trung_B%E1%BB%99
- [23] https://vi.wikipedia.org/wiki/B%E1%BA%AFc_B%E1%BB%99