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ABSTRACT 

In this paper, we present a class of implicit Second-derivative Runge-

Kutta collocation methods designed for the numerical solution of 

systems of initial value problems that are derived and studied. We also 

discuss the difficulty associated with large regions of absolute stability. 

In this case, one must take advantage of the second derivative terms in 

the methods. We involve the introduction of collocation at the two 

endpoints of the integration interval in addition to the Gaussian interior 

collocation points and also the introduction of a different class of basic 

second derivative methods. With these modifications, fewer function 

evaluations per step are achieved. The stability and consistency 

properties of the methods are investigated, with the solution curves of 

the new methods. Numerical examples are given to illustrate the 

accuracy and efficiency of the proposed methods. 
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INTRODUCTION  

In this paper, we present a new class of implicit second-derivative Runge-Kutta (SDRK) collocation methods for the 

numerical solution of initial value problems for systems of ordinary differential equations (ODEs), of the form 
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On the finite interval  NxxI ,0= , where     mm

N

m

N xxfandxxy →→ ,:,: 00
 is continuous and 

differentiable. The motivation for studying the implicit second-derivative Runge-Kutta collocation methods, 

particularly, the Gauss–Runge–Kutta collocation family, is that, collocation at the Gauss points leads to Runge-Kutta 

methods which are symmetric and algebraically stable, Burrage and Butcher [1979].we therefore, extend the concept 

adopted in Yakubu [2003, 2010, 2011, 2015, 2016] and Donald, Skwame and Dominic [2015] that the only symmetric 

algebraically stable collocation methods are those based on Gauss points. The inclusion of the two endpoints of the 

integration interval as collocation points in addition to the Gaussian interior collocation points make them more 

advantageous, because this minimizes the number of internal function evaluations necessary to achieve a given order 

of accuracy. Secondly, a substantial increase in efficiency maybe achieved by the numerical integration methods which 

utilize the second-derivative terms. Thirdly, the relatively good stability properties enjoyed by these methods make 

them more efficient for the numerical integration of systems having Jacobians with eigenvalues lying close to the 

imaginary axis Adesanya, Fotta and Onsachi[2016] and Akinfenwa, Abdulganiy, Akinnukawe ,Okunuga and Rufai 

[2017]. 

 
This paper focused on the derivation of a class of implicit second-derivative Runge-Kutta (SDRK) collocation methods 

for solving systems of initial value problem of ordinary differential equations. Yakubu, Kumleng and Markus [2017], 

developed second-derivative Runge-Kutta collocation methods based on Lobatto nodes for solving stiff ODEs and yields 

a very good results, their work motivates us to derive a class of implicit Second-derivative Runge-Kutta collocation 

methods designed for the numerical solution of systems of initial value problems. 

 

1. A GENERAL APPROACH TO THE DERIVATION OF THE SDRK COLLOCATION METHODS 

In this section, we describe the general derivation of the special class of implicit second-derivative Runge-Kutta 

collocation methods for direct integration of initial value problems of the form (1). We consider the multistep 

collocation approach of Onumanyi et al. [1994] and now extend to second derivative of the form, 
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                                                                            (2)  
 
We set the sum tsrp ++=  where, r  denotes the number of interpolation points used, and    0,0  ts  are 

distinct collocation points. Here ( )xj , ( )xj  and ( )x  are parameters of the methods which are to be determined. 

They are assumed to be polynomials of the form  
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We find it convenient to introduce the following polynomials 
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which we shall call the first, second and third characteristic polynomials respectively of (2). 

Here, our aim is to utilize not only the interpolation points  jx   but also several collocation points on the interpolation 

interval of (2). This means that we employ a special type of Hermite interpolation for  ( )xy . Substituting (3) into (2) 

we have
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Writing 
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Equation (4) reduces to 
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Here  jnc +   are collocation points distributed on the step-points array, 
jny +

 is the interpolation data of ( )xy   on
jnx +

, jny +
  and jny +

  are the collocation data of  ( )xy  and ( )xy  , respectively, on jnc + . We set the sum tsr ++   to be 

equal to p  so as to be able to determine   i  in (2) uniquely.  

To fix the parameters ( )1,,1,0 −= pii  , we impose the following conditions: 
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In fact, equations (6) to (8) can be expressed in the matrix-vector form by 
   

               yM =                                                                          (9) 
 

where the yandvectorsptheMmatrixsquarep −− ,   are defined as follows: 
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where 
( ) ( )( )211 −−=−= ppDandpD

 represent first and second derivatives respectively. Similar to the 

Vandermonde matrix, M in (9) is non-singular. Consequently, equation (9) has the unique solution given by 

 

 yM 1−=                                                                  (11) 

 

The interpolation polynomial ( )xy in (5) can now be expressed explicitly as follows: 
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Recall that
tsp ++

, such that equation (12) becomes 
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Expanding (13) fully, gives the continuous scheme; 
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where T denotes transpose of the matrix U in (11) and the vector
( )12 ,,,,1 −++ tsrxxx 

. 
 
In the second-derivative methods, we see that, in addition to the computation of the f -values at the internal stages in 

the standard Runge-Kutta methods Butcher [2014], the modified methods involve computing g-values, where g is 

defined by Butcher and Hojjati [2005] as 

 

( ) ( )( ),xygxy =
 
 the component number i of ( )( )xyg can be written as, 
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According to Chan and Tsai [2010] these methods can be practical if the costs of evaluating g are comparable to those 

in evaluating f and can even be more efficient than the standard Runge-Kutta methods if the number of function 

evaluations is fewer. It is convenient to rewrite the coefficients of the defining method (13) evaluated at some points in 

the block matrix form as 
 

 ( ) ( ) ( ) ( ),ˆ2 YGIAhYFIAhyeY NNn ++=                                             (14) 
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where,    
sxsijsxsij aAaA ˆˆ, == indicate the dependence of the stages on the derivatives found at the other stages and 

   
11

ˆˆ,
sxisxi bbbb == are vectors of quadrature weights showing how the final result depends on the derivatives 

computed at the various stages, I is the identity matrix of size equal to the differential equation system to be solved 

and N is the dimension of the system. Also  is the Kronecker product of two matrices and e is the s×1 vector of units. 

For simplicity, we write the method in Yakubu [2017] and Yusuf [2019] as follows: 
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and the block vectors in  
sN are defined by 
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where s denotes stage, values used in the computation of the step .,,, 21 SYYY   

The coefficients of the Implicit Second-Derivative Runge-Kutta methods can be conveniently represented more 

compactly in an extended partitioned Butcher Tableau, of the form 
 

 TT
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where   11 sxc =  is the abscissa vectors which indicates the position within the step of the stage values. 

 
2. THE SPECIFICATION OF METHODS 
 
2.1 Fifth Order Implicit Second-Derivative Runge-Kutta Collocation Method 

For the first implicit second-derivative Runge-Kutta collocation method of order five, we define ( )nxx −= and 

consider the zeros of Legendre polynomial of degree two in the symmetric interval  1,1− , which were transformed 

into the standard interval  1, +nn xx . The proposed continuous scheme in (13) can now be written as, 
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Evaluating the continuous scheme ( )xy in (18) at the points vnunn xandxxx +++= ,1 (where u and v are the zeros of 

Legendre polynomial of degree 2) we obtain the implicit second- derivative Runge-Kutta collocation method of 

uniformly order 5with only 2-stages with the following block hybrid discrete scheme: 
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Converting the block hybrid discrete scheme to implicit second-derivative Runge-Kutta method and using (16) we write 

the method as, 

2

2

1

2

3211
48

2

48

2

5

4

60

27

10

1

60

27

10

1
GhGhFhFhFhyy nn 












−














+








+














−+














++= −

                                                          (20) 

 

where the internal stage values at the 
thn step are calculated as, 

11 −= nyY , 
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where the stage derivatives are calculated as follows: 
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The implicit second-derivative Runge-Kutta collocation method has order p = 5. Writing the method in an extended 

Butcher Tableau (16), we have 
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2.2 A Sixth Order Implicit Second-Derivative Runge-Kutta Collocation Method 

Next, as the order of the method being sought for increases, the algebraic conditions on the coefficients of the method 

become increasingly complicated. However, we consider again the two end points of the integration interval as 

collocation points in addition to the Gaussian interior collocation points, obtained in the same manner as in method 

(18) with ( ) 03 =xp , Legendre polynomial of degree 3 as follows, 
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which are also valid in the interval  1, +nn xx , expanding (2) to obtain the proposed continuous scheme in (13) takes 

the following form: 
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Evaluating the proposed continuous scheme ( )xy in (19) at the points vnunn xandxxx +++= ,1 (where u and v are 

the zeros of Legendre polynomial of degree 3) we obtain the block hybrid discrete scheme as follows: 
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Solving the block hybrid discrete scheme simultaneously, we obtain the higher order implicit second-derivative 

Runge-Kutta collocation method and writing in the form of (15) as follows: 
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where the internal stage values at the 
thn step are computed as: 

11 −= nyY , 

3

2

2

2

1

2

32112

360

3

34560

161

180

1

360

3

34560

271

8640

3659

15

2

15

32

30

7

8640

3349

15

2

GhGhGh

FhFhFhyY n














−+








−














−−














−+














−+














−+= −

 

3

2

2

2

1

2

32113

360

3

432

1

216

7

360

3

432

1

108

37

15

2

30

7

108

37

15

2

GhGhGh

FhFhFhyY n














−+








−














++














−+








+














++= −



International Research Publications Iho:                                                                    Engineering & Computer Sciences 
00.00000/irespub.v0i0.0DOI: 00.00000/irespub.v0i0.0 

  

VOLUME 1 ISSUE 1 23 

 














+−








−














++














++














++














++= −

360

3

34560

271

864

1

360

3

34560

161

8640

3349

15

2

15

32

30

7

8649

3659

15

2

2

2

2

1

2

32114

hGhGh

FhFhFhyY n  

2

2

1

2

32115
180

3

180

3

15

4

15

7

15

4
GhGhFFhFhyY n 












−














+








+








+








+= −

 

where the stage derivatives are calculated as follows: 
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The implicit second-derivative Runge-Kutta collocation method has order p = 6. Writing the method in an extended 

Butcher Tableau (16), we have 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. ANALYSIS OF THE IMPLICIT SECOND-DERIVATIVE RUNGE-KUTTA COLLOCATION METHODS 
 
3.1 Order, Consistency, Zero-stability and Convergence of SDRKC Methods 

With the multistep collocation formula (2) we associate the linear difference operator  defined by  

 

( )  ( ) ( ) ( ) ( ) ( ) ( )  
= = =

+++++=
r

j

s

j

t

j

jjj jhxyxhjhxyxhjhxyxhxy
0 0 0

2;                                         (22b) 

 

where ( )xy is an arbitrary function, continuously differentiable on  ba, , following Yakubu [2010], we can write the 

terms in (20b) as a Taylor series expansion about the point x to obtain the expression, 
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Where the constant coefficients ,2,1,0, =pC p
are given as follows: 
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According to Yakubu [2010], the multistep collocation formula (2) has order p if 
 

( )  ( )( ) .0,0,; 110

1 ==== +

+

pp

p CCCChOhxy   

 

Therefore 
1+pC is the error constant and 

( )11

1

++

+

pp

p yhC is the principal local truncation error at the point nx (Chan 

and Tai [2010]). Therefore, the order and the error constants for the two methods constructed are represented in the 

Tables below. 

 

TABLE 1: Order and error constants of SDRK collocation methods 

Order and Error Constants of the ISDRK method for (19) 

 

Order (p) Error Constant (𝑪𝑷+𝟏) 

5 
1920

7−  

5 
60

2

320

11
+

−  

5 
60

2

320

11
−

−  

 
TABLE 2: Order and error constants of SDRK collocation methods 

Order and Error Constants of the ISDRK method for (21) 
 

Order (p) Error Constant (𝑪𝑷+𝟏) 

6 
143360

17  

6 
4480

32751−  

6 
35840

51  

6 
57344

3809

4480

471
+  
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Definition 3.1. According to Yakubu and Kwami [2015], The implicit second-derivative Runge-Kutta collocation (18) 

and (20) are said to be consistent if the order of the individual method is greater than or equal to one, that is, if .1p  
 

.21
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Definition 3.2. According to Yakubu et,al. [2010], The second derivative Runge-Kutta collocation methods (18) and  

(20) are said to be zero-stable if the roots 
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Satisfies kjj ,,2,1,1 =  and for those roots with 1=j , the multiplicity does not exceed 2. 

 
Definition 3.3. According to Yakubu et,al. [2010], The necessary and sufficient conditions for the SDRK collocation 

methods (18) and (20) to be convergent are that they must be consistent and zero-stable. Hence, our methods are 

convergent. 

 
3.2. Stability regions of the SDRK collocation methods 

In this paper, the stability properties of the methods are discussed by reformulating the block hybrid discrete schemes 

as general linear methods by Butcher [2014] and Butcher and Hojjati [2005]. Hence, we use the notations introduced 

by Butcher and Hojjati [2005], where a general linear method is represented by a partitioned ( ) ( )rsxrs ++ matrix 

(containing A,U, B and V), 
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Hence (21) takes the form 
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                                           (24) 

 
Where r denotes quantities as output from each step and input to the next step and s denotes stage values used in the 

computation of the step .,,, 21 syyy  The coefficients of these matrices VandBUA ,,, indicate the relationship 

between the various numerical quantities that arise in the computation of stability regions. The elements of the matrices

VandBUA ,,, are substituted into the stability matrix which leads to the recurrent equation 

  ( )   hZNnyzMy nn =−==− ,1,,3,2,1,1   

 
where the stability matrix 
 

( ) ( ) UzAIzBVzM
1−

−+=  

 
and the stability polynomial of the method can easily be obtained as follows: 
 

( ) ( )( ).det, 2 BVzUzArz −−−=  

 
The absolute stability region of the method is defined as 
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Computing the stability functions gives the stability polynomials of the methods as follows: 
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which are plotted to produce the required graphs of the absolute stability regions of the methods as displayed in Figures 
below: 
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FIGURE 1: Regions of absolute stability of method (19) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 2: Regions of absolute stability of method (21) 

 
Remark:  3.4. The stability regions contain the entire left half complex plane. Clearly, the methods are L-stable, 

therefore, the methods are A-stable and in addition equations (25a) and (25b) satisfy ( ) 0lim =→ zRz . 

4. NUMERICAL EXPERIMENTS 
In this section, we test the effectiveness and validity of the newly derived methods (19) and (21) by applying to some 
highly stiff systems of initial value problems of the form (1). 
 

Preliminary numerical experiments have been carried out using a constant step size implementation in Matlab. The test 

examples are some systems of ordinary differential equations written as first order initial value problems. We solved 

these systems and compared the obtained results side by side in Tables.
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Example 1:  

We consider a nonlinear stiff problem (Chemostat and Micro Organism Culturing Problem) 

 

( ) ( ) 3
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Chemostat is a vessel into which nutrients are pumped to feed a micro organism with limited  

Concentration of micro in the vessel.
 

 
Example 2:  
The second test problem is highly Stiff Linear Systems  
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FIGURE 3: Solution Curve of Problem 1 Solved with ISDRK method (19) of order 5
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FIGURE 4: Solution Curve of Problem 1 Solved with ISDRK method (21) of order 6 
 

TABLE 3: Absolute error of problem 2 solved with ISDRK method (19) of order 5 

 

h=0.1 Exact Solution Numerical Solution Absolute Error(y'-yn') 

x y1 y2 Y1 y2 y1 y2 

20 -2.7067e-001 1.3534e-001 -2.7156e-001 1.3578e-001 8.9265e-004 4.4633e-004 

40 -3.6631e-002 1.8316e-002 -3.6873e-002 1.8437e-002 2.4201e-004 1.2101e-004 

60 -4.9575e-003 2.4788e-003 -5.0067e-003 2.5034e-003 4.9210e-005 2.4605e-005 

100 -9.0800e-005 4.5400e-005 -9.2307e-005 4.6154e-005 1.5072e-006 7.5358e-007 

200 -4.1223e-009 2.0612e-009 -4.2603e-009 2.1301e-009 1.3799e-010 6.8993e-011 

240 -7.5503e-011 3.7751e-011 -7.8546e-011 3.9273e-011 3.0428e-012 1.5214e-012 

260 -1.0218e-011 5.1091e-012 -1.0665e-011 5.3325e-012 4.4686e-013 2.2343e-013 

300 -1.8715e-013 9.3576e-014 -1.9663e-013 9.8314e-014 9.4750e-015 4.7375e-015 
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FIGURE 5: Solution Curve of Problem 2 Solved with ISDRK method (19) of order 5 

 

 

TABLE 4: Absolute error of problem 2 solved with ISDRK method (21) of order 6 

 

h=0.1 
x 

Exact Solution Numerical Solution Absolute Error(y'-yn') 

y1 y2 y1 y2 y1 y2 

20 -1.6015e-15 8.0074e-16 -1.1864e-15 5.9320e-16 6.3825e-22 3.1912e-22 

40 -1.3112e-15 6.5559e-16 -9.7134e-16 4.8567e-16 5.2553e-22 2.6277e-22 

60 -1.0735e-15 5.3675e-16 -7.9527e-16 3.9763e-16 4.3271e-22 2.1636e-22 

100 -7.1959e-16 3.5979e-16 -5.3308e-16 2.6654e-16 2.9333e-22 1.4666e-22 

200 -2.6472e-16 1.3236e-16 -1.9611e-16 9.8055e-17 1.1092e-22 5.5459e-23 

300 -9.7386e-17 4.8693e-17 -7.2145e-17 3.6073e-17 4.1911e-23 2.0956e-23 
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FIGURE 6: Solution Curve of Problem 2 Solved with ISDRK method (21) of order 6 
 

CONCLUSION 

The purpose of the present paper has been to introduce a special class of implicit second-derivative Runge-Kutta 

collocation methods suitable for the approximate numerical integration of systems of ordinary differential equations. 

The derived methods provide an efficient way to find numerical solutions to systems of initial value problems when the 

second derivative terms are cheap to evaluate. We present two new methods of orders five and six. We also presented 

summary of numerical comparisons between the new methods on a set of two systems of initial value problems. 

Chemostat and Micro Organism Culturing Model. This model is often used to study the specific microbial interactions 

or parameters associated with infection and disease. From the solution curves we observed that there is a steady culture 

of the Micro Organism and our method was able to maintain the steady culture just like the ode 23. The numerical 

comparisons as well as establishing the efficiency of the new methods show that the order five method and the order 

six method shows more accuracy on all the problems considered in the paper. 
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