Radiogenic Heat Production in Selected River Sediments of Bungoma County, Kenya

Publication: 01/02/2025

Page: 1-7

Volume 4 Issue 1

How to cite 

Waswa, M. N., Wanyama, M. K., (2025). Radiogenic Heat Production in Selected River Sediments of Bungoma Country, Kenya. IRESPUB Journal of Environmental & Material Sciences, 4(1), 1-7. https://doi.org/10.62179/irespub-jems.v4i1.1

Michael Nakitare Waswa & Mukanda Kere Wanyama

Department of Science, Technology & Engineering; Kibabii University, 1699-50200 Bungoma

 
Abstract

This study is aimed at investigating the radiogenic heat production in the sediment samples using measurements of primordial radionuclide concentrations of uranium,  thorium, and potassium in the major rivers of Bungoma County, Kenya.  A gamma-ray spectrometer is used to obtain varied data on naturally occurring radionuclides in the samples from the ten rivers and reveals the contents and the distribution of the radioactive elements. The results show that the contribution and rate of heat production of 40-K, 238-U, and 232-Th in the samples vary significantly with geological locations, with 232Th and 40K as the major elements that predominate in heat production in the study area, with 238U also contributing significantly. The mean heat produced by uranium,  thorium, and potassium is 321.0223×10-5ρwkg-1, 7772.659×10-5ρwkg-1 and 7196.131×10-5ρwkg-1respectively. The total heat produced in the study area varied from  9.191292×10-5ρwkg-1  to  63408.01×10-5ρwkg-1,  which can classify the study area as Low-to-Moderate  Heat  Production  Potential zone. 

 
Keywords

radiogenic heat production; primordial radionuclides; gamma-ray spectrometry.

 
References
  1. Ojo, E. O., Shittu, H. O., Adelowo, A. A., Ossai, B. N., & Amemfiene, C. B. (2015). The Model of Radiogenic Heat Production in the Federal Capital Territory (FCT), Abuja, Nigeria. International Journal of Modern Physics and Applications, 1(5), 200-204.
  2. Akin, U., & Ciftçi, Y. (2023). Heat flow of the kirşehir massif and geological sources of the radiogenic heat production. Bulletin of the Mineral Research and Exploration, 2011(143).
  3. Zhang, B., Wu, J., Ling, H., & Chen, P. (2007). Estimate of influence of U-Th-K radiogenic heat on cooling process of granitic melt and its geological implications. Science in China Series D: Earth Sciences, 50(5), 672-677.
  4. Murugesan, S., & Ravichandran, S. (2023). Radioactive heat production rate and excess lifetime cancer risk of sand from two major rivers in India–A comparative study. International Journal of Radiation Research, 21(1), 117-124.
  5. Sathish, V., Chandrasekaran, A., Manigandan, S., Tamilarasi, A., & Thangam, V. (2022). Assessment of natural radiation hazards and function of heat production rate in lake sediments of Puliyanthangal Lake surrounding the Ranipet industrial area, Tamil Nadu. Journal of Radioanalytical and Nuclear Chemistry, 331(3), 1495-1505.
  6. Murugesan, S., Mullainathan, S., Ramasamy, V., & Meenakshisundaram, V. (2016). Environmental radioactivity, magnetic measurements and mineral analysis of major South Indian river sediments. J. Mater. Environ. Sci, 7(7), 2375-2388.
  7. El-Taher, A., & Abbady, A. G. (2012). Natural radioactivity levels and associated radiation hazards in Nile river sediments from Aswan to El-Minia, Upper Egypt.
  8. Bouhila, G., Benrachi, F., & Ramdhane, M. (2018). Levels and effects of natural radionuclides in sediment banks of Rhumel River (Northeast Algeria). Cumhuriyet Science Journal, 39(2), 349-356.
  9. Ononugbo, C. P., Avwiri, G. O., & Ogan, C. A. (2016). Natural radioactivity measurement and evaluation of radiological hazards in sediment of Imo River, in rivers state, Nigeria by gamma ray spectrometry. Journal of Applied Physics, 3(1), 75-83.
  10. Najam, L. A., Al-Dbag, S. T., Wais, T. Y., & Mansour, H. (2022). Radiogenic heat production from natural radionuclides in sediments of the Tigris river in Mosul City, Iraq. International Journal of Nuclear Energy Science and Technology, 15(3-4), 302-316.
  11. Asere, A. M., & Sedara, S. O. (2020). Determination of Natural Radioactivity Concentration and Radiogenic Heat Production in Selected Quarry Sites in Ondo State, Nigeria. Journal of Science and Technology Research, 2(3).
  12. Olanyaa, A., Okellob, D., Oruruc, B., & Kisolod, A. Natural Radioactivity Levels and Radiogenic Heat Production in River Sediments from Gulu and Amuru Districts, Northern Uganda.
  13. Grupen C. (1996). Particle detectors, Cambridge University Press. pp30-35.
  14. Schoeman, D. J & Hawke, F. (1948). The fruit-coat fat of myricacordifollia-cape berry wax. South African Journal of Chemistry, 1(1), 5-13.
  15. Ingana, T. Z. (1993). Remote sensing: Application to the geological mapping with reflectance implication of rocks of the Webuye-Bungoma area (Doctoral dissertation).
  16. Rybach, L. (1988). Determination of heat production rate. Handbook of terrestrial heat flow density determinations.
  17. Asfahani, J. (2019). Heat production estimation by using natural gamma-ray well-logging technique in phosphatic khneifis deposit in Syria. Applied Radiation and Isotopes, 145, 209-216.
  18. Tzortzis, M., Tsertos, H., Christofides, S., &Christoduolides, G. (2003). Gamma-ray measurements of naturally occurring radioactive samples from Cyprus characteristic geological rocks. Radiation measurements, 37(3), 221-229.