Nano-probiotics and nano-prebiotics potential applications

Publication: 04/11/2021

Page: 9-13

Volume 1 Issue 1

How to cite 

Mason, D. (2021). Nano-probiotics and nano-prebiotics potential applications. IRESPUB Journal of Life Sciences, 1(1), 9-13. 

Dieter Mason

Greenlife Laboratories, Florida, U.S.A

 
Abstract

Nanoparticles are everywhere, which makes them harmful. This calls for the development of nano-nutraceuticals from antioxidants, vitamins, fatty acids, fibers, probiotics, and prebiotics. In this mini-review, nanoparticles, nanolayers, nanobeads, nanoemulsions, and nanofibers are used with probiotics and prebiotics for numerous applications as found in cancer, microbial, antioxidant, and photo-reactive studies. Not so much could be discussed probably because of safety issues but a lot of practical potentials abounds.

 

Keywords

nanoparticles; nutraceuticals; nanoprebiotics; nanoprobiotics; applications.

 

References
  1. Durazzo, A., Nazhand, A., Lucarini, M. et al. (2020). An updated overview on nanonutraceuticals: focus on nanoprebiotics and nanoprobiotics. International Journal of Molecular Sciences, 21, 2285.
  2. Sanders, M.E., Merenstein, D.J., Reid, G., Gibson, G.R. & Rastall, R.A. (2019). Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nature Reviews Gastroenterology & Hepatology, 16, 605–616.
  3. Ashaolu, T.J. (2020). Immune boosting functional foods and their mechanisms: a critical evaluation of probiotics and prebiotics. Biomedicine & Pharmacotherapy, 130, 110625.
  4. Ashaolu, T. J. (2021). Emerging applications of nanotechnologies to probiotics and prebiotics. International Journal of Food Science & Technology, 56(8), 3719–3725. doi:10.1111/ijfs.15020
  5. Rocha-Ramírez, L. M., Hernández-Ochoa, B., Gómez-Manzo, S., Marcial-Quino, J., Cárdenas-Rodríguez, N., Centeno-Leija, S., & García-Garibay, M. (2020). Evaluation of immunomodulatory activities of the heat-killed probiotic strain Lactobacillus casei IMAU60214 on macrophages in vitro. Microorganisms, 8(1), 79.
  6. Chen, Y., Zhang, L., Hong, G. et al. (2020). Probiotic mixtures with aerobic constituents promoted the recovery of multi-barriers in DSS-induced chronic colitis. Life Sciences, 240, 117089.
  7. Chen, J.C., Tsai, C.C., Hsieh, C.C., Lan, A., Huang, C.C. & Leu, S.F. (2018). Multispecies probiotics combination prevents ovalbumin-induced airway hyperreactivity in mice. Allergologia et Immunopathologia, 46, 354–360.
  8. Justino, P.F., Franco, A.X., Pontier-Bres, R. et al. (2020). Modulation of 5-fluorouracil activation of toll-like/MyD88/NF-jB/MAPK pathway by Saccharomyces boulardii CNCM I-745 probiotic. Cytokine, 125, 154791.
  9. Hsu, T.C., Yi, P.J., Lee, T.Y. & Liu, J.R. (2018). Probiotic characteristics and zearalenone-removal ability of a Bacillus licheniformis strain. PLoS One, 13, e0194866.
  10. Miraghajani, M., Zaghian, N., Mirlohi, M. & Ghiasvand, R. (2019). Probiotic soy milk consumption and renal function among type 2 diabetic patients with nephropathy: a randomized controlled clinical trial. Probiotics and Antimicrobial Proteins, 11, 124–132.
  11. Legrand, R., Lucas, N., Dominique, M. et al. (2020). Commensal Hafnia alvei strain reduces food intake and fat mass in obese mice —a new potential probiotic for appetite and body weight management. International Journal of Obesity, 44, 1041–1051.
  12. Wen, Y., Wen, P., Hu, T.G. et al. (2020). Encapsulation of phycocyanin by prebiotics and polysaccharides-based electrospun fibers and improved colon cancer prevention effects. International Journal of Biological Macromolecules, 149, 672–681.
  13. Zhu, W., Zhou, S., Liu, J., McLean, R.J. & Chu, W. (2020). Prebiotic, immuno-stimulating and gut microbiota-modulating effects of Lycium barbarum polysaccharide. Biomedicine & Pharmacotherapy, 121, 109591.
  14. Korcz, E., Kerenyi, Z. & Varga, L. (2018). Dietary fibers, prebiotics, and exopolysaccharides produced by lactic acid bacteria: potential health benefits with special regard to cholesterol-lowering effects. Food & Function, 9, 3057–3068.
  15. Cerdo, T., Garcıa-Santos, J.A., Bermudez, G. & Campoy, C. (2019). The role of probiotics and prebiotics in the prevention and treatment of obesity. Nutrients, 11, 635.
  16. Zhou, L., Xie, M., Yang, F. & Liu, J. (2020). Antioxidant activity of high purity blueberry anthocyanins and the effects on human intestinal microbiota. LWT, 117, 108621.
  17. da Silva Sabo, S., Converti, A., Todorov, S.D., Domınguez, J.M. & de Souza Oliveira, R.P. (2015). Effect of inulin on growth and bacteriocin production by Lactobacillus plantarum in stationary and shaken cultures. International Journal of Food Science & Technology, 50, 864–870.
  18. Ramos, C.I., Armani, R.G., Canziani, M.E.F. et al. (2019). Effect of prebiotic (fructooligosaccharide) on uremic toxins of chronic kidney disease patients: a randomized controlled trial. Nephrology Dialysis Transplantation, 34, 1876–1884.
  19. Khangwal, I. & Shukla, P. (2019). Prospecting prebiotics, innovative evaluation methods, and their health applications: a review. 3 Biotech, 9, 187.
  20. Hu, Q., Wu, M., Fang, C. et al. (2015). Engineering nanoparticle-coated bacteria as oral DNA vaccines for cancer immunotherapy. Nano Letters, 15, 2732–2739.
  21. Kazmierczak, R., Choe, E., Sinclair, J. & Eisenstark, A. (2015). Direct attachment of nanoparticle cargo to Salmonella typhimurium membranes designed for combination bacteriotherapy against tumors. In: Salmonella. Pp. 151–163. New York, NY: Humana Press.
  22. Song, Q., Zheng, C., Jia, J. et al. (2019). A probiotic spore-based oral autonomous nanoparticles generator for cancer therapy. Advanced Materials, 31, 1903793.
  23. Mousavi, S.M.A.A., Mirhosseini, S.A., Panahi, M.R.S. & Hosseini, H.M. (2020). Characterization of biosynthesized silver nanoparticles using Lactobacillus rhamnosus GG and its in vitro assessment against colorectal cancer cells. Probiotics and Antimicrobial Proteins, 12, 740–746.
  24. Khan, S.T., Saleem, S., Ahamed, M. & Ahmad, J. (2019). Survival of probiotic bacteria in the presence of food-grade nanoparticles from chocolates: an in vitro and in vivo study. Applied Microbiology and Biotechnology, 103, 6689–6700.
  25. Kim, W.S., Lee, J.Y., Singh, B. et al. (2018). A new way of producing pediocin in Pediococcus acidilactici through intracellular stimulation by internalized inulin nanoparticles. Scientific Reports, 8, 1– 14.
  26. Hong, L., Kim, W.S., Lee, S.M., Kang, S.K., Choi, Y.J. & Cho, C.S. (2019). Pullulan nanoparticles as prebiotics enhance the antibacterial properties of Lactobacillus plantarum through the induction of mild stress in probiotics. Frontiers in Microbiology, 10, 142.
  27. Rezaee, P., Kermanshahi, R. & Katouli, M. (2014). Prebiotics decrease the antibacterial effect of nano silver and nano TiO2 particles against probiotic bacteria of food. Current Nutrition & Food Science, 10, 88–93.
  28. Kim, W.S., Han, G.G., Hong, L. et al. (2019). Novel production of natural bacteriocin via internalization of dextran nanoparticles into probiotics. Biomaterials, 218, 119360.
  29. Zupancic, S., Skrlec, K., Kocbek, P., Kristl, J. & Berlec, A. (2019). Effects of electrospinning on the viability of ten species of lactic acid bacteria in poly (ethylene oxide) nanofibers. Pharmaceutics, 11, 483.
  30. Shahriar, S.M., Mondal, J., Hasan, M.N., Revuri, V., Lee, D.Y. & Lee, Y.K. (2019). Electrospinning nanofibers for therapeutics delivery. Nanomaterials, 9, 532.
  31. Krithika, B. & Preetha, R. (2019). Formulation of protein-based inulin incorporated synbiotic nanoemulsion for enhanced stability of probiotic. Materials Research Express, 6, 114003.