A comparative study of natural radioactivity and associated radiological hazards of imported sanitary ware products sold in Kenya

Publication: 07/08/2024

Page: 1-9

Volume 3 Issue 2

How to cite 

Natangah, E. C., Waswa, M. N., Khakina, P. N., Kibe, H. E. (2024). A comparative study of natural radioactivity and associated radiological hazards of imported sanitary ware products sold in Kenya. IRESPUB Journal of Natural & Applied Sciences, 3(2), 1-9. 

Edwin Chemos Natang’ah1, Michael Nakitare Waswa1, Peter Nyongesa Khakina1, and Horace Eyinda Kibe2

1Department of Science, Technology and Engineering, Kibabii University, Kenya

2Department of Physical sciences, Bomet University College, Kenya

 

Abstract

Natural radioisotopes are present in all ceramic products used in building construction at varying rates. The primary source of outdoor radiation that residents of homes or workplaces are exposed to is these radioisotopes. Determining the radiation levels of ceramic items used in buildings is crucial. In this investigation, Thallium doped sodium iodide detector NaI(Ti) was used to measure the natural radioactivity levels (226Ra, 232Th, and 40K) in twelve ceramic sanitary ware products manufactured in India, China and Uganda imported and used in Kenya. For the studied samples, the average activity concentrations of 226Ra, 232Th, and 40K radionuclides were 19.5±0.99Bq/kg, 89.75±4.49Bq/kg and 405.75±20.29Bq/kg for 226Ra, 232Th and 40K respectively. With the exception of the average 232Th concentration of studied samples, these results are lower than the global average values (50, 50, and 500 Bq/kg).Values for radium equivalent activity (Raeq), gamma index (Iγ), external hazard index (Hex), internal hazard index (HIn), absorbed dose rate (ADR), annual effective dose (AED), and excess lifetime cancer risk (ELCR) were also computed in order to assess the radiological risks resulting from naturally occurring radionuclides of the ceramic sanitary ware samples under examination. The mean of the radioactive hazard parameters (Raeq, Iγ, Hex, HIn ,D, and AEDE,) computed for every sample of ceramic sanitary equipment was discovered to be below the upper bounds suggested by global organization safe for ELCR which registered slightly higher values.

 

Keywords

natural radioisotopes; ceramic sanitary ware; thallium doped sodium iodide detector; radioactive hazard parameters.

 

References
  1. Schroeyers, W., Stals, M., Verhoeven, S.,Pellens, V., Hulshagen, L., Vandervelpen, C. &Schreurs,  S.  (2011).   Radiological    study   of   transport   and processing of naturally occurring radioactive materials.
  2. Turhan, Ş., Arıkan, I. H.,  Demirel,   H.,  &  Güngör,  N.  (2011). Radiometric   analysis of Raw   materials    and    end    products  in   the   Turkish   ceramics   industry.   Radiation Physics and Chemistry, 80(5), 620-625.
  3. Barescut,  J.,  Righi,  S.,  Guerra,   R.,  Jeyapandian,  M., Verità,  S.,  &  Albertazzi,   A. (2009) Natural radioactivity in Italian ceramic tiles. Radioprotection, 44(5), 413-419.
  4. Dizman, S.  (2021). Investigation   of    natural     radioactivity   and   associated radiological Hazards   in    Ceramic    sanitary    ware    products     commercially    sold    in    Turkey.
  5. Appleton, J. D. (2007). Radon: sources, health risks, and hazard mapping. Ambio, 85-89.
  6. Nalianya, J. S., Waswa, M. N., Maingi, F.,& Wanyama, C. K.(2022).  Radiological. Measurement of hazardous levels in construction  tiles  in  Bungoma county, Kenya.  ITEGAM-JETIA 8(33), 40-43.
  7. Righi,  S.,  &  Bruzzi,  L.  (2006). Natural  radioactivity   and   radon  exhalation  in   building materials   used   in  Italian   dwellings.   Journal  of  environmental  radioactivity,  88(2), 158-170.
  8. Görür, F. K., Keser, R., Akçay, N., Dizman, S., & Okumuşoğlu, N. T. (2011). Radionuclides and heavy metals concentrations in Turkish market tea. Food control, 22(12), 2065-2070.
  9. Sidique, E., Elhaddad, M. A., Abdelwahab, S. F., & El Hadek, H. H. (2021). Health Hazards Assessment a Geochemistry of ElSibai-Abu ElTiyur Granites, Central Eastern Desert, Egypt. Applied Sciences, 11(24), 12002.
  10. Beretka, J., &  Mathew,  P. J. (1985).  Natural   radioactivity of  Australian building  materials, industrial wastes and  by-products. Health physics, 48(1), 87-95.
  11. Turhan,  Ş., Arıkan,  I. H.,  Demirel,   H.,   &   Güngör,   N.  (2011).   Radiometric   analysis    of Raw   materials    and    end    products  in   the   Turkish   ceramics   industry.  Radiation Physics and  Chemistry, 80(5), 620-625.
  12. Joel, E. S., Maxwell, O., Adewoyin, O. O., Ehi-Eromosele, C. O., Embong,  Z., & Oyawoye  , F. (2018).  Assessment  of  natural   radioactivity  in  various  commercial  tiles used for building  purposes in Nigeria. MethodsX, 5, 8-19.
  13. Laurier, D.,  Ruehm, W.,  Paquet, F.,  Applegate, K., Cool, D.,  Clement,   C., commission on radiological  protection (ICRP)  (2021).  Areas  of research to support the system  of radiological  protection.  Radiation   and  Environmental Biophysics, 60(4), 519-530.
  14. United Nations Scientific Committee on the Effects of Atomic Radiation. (2016). Sources and effects of ionizing radiation, ANNEX B, Exposures from natural radiation sources. UNSCEAR 2016 REPORT, New York, 1, 97-99.
  15. UNSCEAR, S. (2000). effects of Ionizing Radiation. United Nations, New York, 453-487. Radium
  16. Krstić, D., Nikezić, D., Stevanović, N., & Vučić, D. (2007). Radioactivity of some domestic and imported building materials from South Eastern Europe. Radiation Measurements, 42(10), 1731-1736 AED.